Stochastic Differential Equation - Use in Probability and Mathematical Finance

Use in Probability and Mathematical Finance

The notation used in probability theory (and in many applications of probability theory, for instance mathematical finance) is slightly different. This notation makes the exotic nature of the random function of time in the physics formulation more explicit. It is also the notation used in publications on numerical methods for solving stochastic differential equations. In strict mathematical terms, can not be chosen as a usual function, but only as a generalized function. The mathematical formulation treats this complication with less ambiguity than the physics formulation.

A typical equation is of the form

where denotes a Wiener process (Standard Brownian motion). This equation should be interpreted as an informal way of expressing the corresponding integral equation

The equation above characterizes the behavior of the continuous time stochastic process Xt as the sum of an ordinary Lebesgue integral and an Itō integral. A heuristic (but very helpful) interpretation of the stochastic differential equation is that in a small time interval of length δ the stochastic process Xt changes its value by an amount that is normally distributed with expectation μ(Xt, t) δ and variance σ(Xt, tδ and is independent of the past behavior of the process. This is so because the increments of a Wiener process are independent and normally distributed. The function μ is referred to as the drift coefficient, while σ is called the diffusion coefficient. The stochastic process Xt is called a diffusion process, and is usually a Markov process.

The formal interpretation of an SDE is given in terms of what constitutes a solution to the SDE. There are two main definitions of a solution to an SDE, a strong solution and a weak solution. Both require the existence of a process Xt that solves the integral equation version of the SDE. The difference between the two lies in the underlying probability space (Ω, F, Pr). A weak solution consists of a probability space and a process that satisfies the integral equation, while a strong solution is a process that satisfies the equation and is defined on a given probability space.

An important example is the equation for geometric Brownian motion

which is the equation for the dynamics of the price of a stock in the Black Scholes options pricing model of financial mathematics.

There are also more general stochastic differential equations where the coefficients μ and σ depend not only on the present value of the process Xt, but also on previous values of the process and possibly on present or previous values of other processes too. In that case the solution process, X, is not a Markov process, and it is called an Itō process and not a diffusion process. When the coefficients depends only on present and past values of X, the defining equation is called a stochastic delay differential equation.

Read more about this topic:  Stochastic Differential Equation

Famous quotes containing the words probability, mathematical and/or finance:

    The probability of learning something unusual from a newspaper is far greater than that of experiencing it; in other words, it is in the realm of the abstract that the more important things happen in these times, and it is the unimportant that happens in real life.
    Robert Musil (1880–1942)

    The circumstances of human society are too complicated to be submitted to the rigour of mathematical calculation.
    Marquis De Custine (1790–1857)

    Imperialism is capitalism at that stage of development at which the dominance of monopolies and finance capitalism is established; in which the export of capital has acquired pronounced importance; in which the division of the world among the international trusts has begun, in which the division of all territories of the globe among the biggest capitalist powers has been completed.
    Vladimir Ilyich Lenin (1870–1924)