Stereopsis - History of Stereopsis

History of Stereopsis

Stereopsis was first explained by Charles Wheatstone in 1838: “… the mind perceives an object of three dimensions by means of the two dissimilar pictures projected by it on the two retinæ …”. He recognized that because each eye views the visual world from slightly different horizontal positions, each eye's image differs from the other. Objects at different distances from the eyes project images in the two eyes that differ in their horizontal positions, giving the depth cue of horizontal disparity, also known as retinal disparity and as binocular disparity. Wheatstone showed that this was an effective depth cue by creating the illusion of depth from flat pictures that differed only in horizontal disparity. To display his pictures separately to the two eyes, Wheatstone invented the stereoscope.

Leonardo da Vinci had also realized that objects at different distances from the eyes project images in the two eyes that differ in their horizontal positions, but had concluded only that this made it impossible for a painter to portray a realistic depiction of the depth in a scene from a single canvas. Leonardo chose for his near object a column with a circular cross section and for his far object a flat wall. Had he chosen any other near object, he might have discovered horizontal disparity of its features. His column was one of the few objects that projects identical images of itself in the two eyes.

Stereoscopy became popular during Victorian times with the invention of the prism stereoscope by David Brewster. This, combined with photography, meant that tens of thousands of stereograms were produced.

Until about the 1960s, research into stereopsis was dedicated to exploring its limits and its relationship to singleness of vision. Researchers included Peter Ludvig Panum, Ewald Hering, Adelbert Ames Jr., and Kenneth N. Ogle.

In the 1960s, Bela Julesz invented random-dot stereograms. Unlike previous stereograms, in which each half image showed recognizable objects, each half image of the first random-dot stereograms showed a square matrix of about 10,000 small dots, with each dot having a 50% probability of being black or white. No recognizable objects could be seen in either half image. The two half images of a random-dot stereogram were essentially identical, except that one had a square area of dots shifted horizontally by one or two dot diameters, giving horizontal disparity. The gap left by the shifting was filled in with new random dots, hiding the shifted square. Nevertheless, when the two half images were viewed one to each eye, the square area was almost immediately visible by being closer or farther than the background. Julesz whimsically called the square a Cyclopean image after the mythical Cyclops who had only one eye. This was because it was as though we have a cyclopean eye inside our brains that can see cyclopean stimuli hidden to each of our actual eyes. Random-dot stereograms highlighted a problem for stereopsis, the correspondence problem. This is that any dot in one half image can realistically be paired with many same-coloured dots in the other half image. Our visual systems clearly solve the correspondence problem, in that we see the intended depth instead of a fog of false matches. Research began to understand how.

Also in the 1960s, Horace Barlow, Colin Blakemore, and Jack Pettigrew found neurons in the cat visual cortex that had their receptive fields in different horizontal positions in the two eyes. This established the neural basis for stereopsis. Their findings were disputed by David Hubel and Torsten Wiesel, although they eventually conceded when they found similar neurons in the monkey visual cortex. In the 1980s, Gian Poggio and others found neurons in V2 of the monkey brain that responded to the depth of random-dot stereograms.

In the 1970s, Christopher Tyler invented autostereograms, random-dot stereograms that can be viewed without a stereoscope. This led to the popular Magic Eye pictures.

In 1989 Medina demonstrated with photographs that retinal images with no parallax disparity but with different shadows are fused stereoscopically, imparting depth perception to the imaged scene. He named the phenomenon "shadow stereopsis." Shadows are therefore an important, stereoscopic cue for depth perception. He showed how effective the phenomenon is by taking two photographs of the Moon at different times, and therefore with different shadows, making the Moon to appear in 3D stereoscopically, despite the absence of any other stereoscopic cue.

Read more about this topic:  Stereopsis

Famous quotes containing the words history of and/or history:

    The history of reform is always identical; it is the comparison of the idea with the fact. Our modes of living are not agreeable to our imagination. We suspect they are unworthy. We arraign our daily employments.
    Ralph Waldo Emerson (1803–1882)

    ... that there is no other way,
    That the history of creation proceeds according to
    Stringent laws, and that things
    Do get done in this way, but never the things
    We set out to accomplish and wanted so desperately
    To see come into being.
    John Ashbery (b. 1927)