Hopf Algebra Structure and The Milnor Basis
The Steenrod algebra has more structure than a graded Fp-algebra. It is also a Hopf algebra, so that in particular there is a diagonal or comultiplication map
induced by the Cartan formula for the action of the Steenrod algebra on the cup product. It is easier to describe than the product map, and is given by
The linear dual of ψ makes the (graded) linear dual A* of A into an algebra. Milnor (1958) proved, for p = 2, that A* is a polynomial algebra, with one generator ξk of degree 2k - 1, for every k, and for p>2 the dual Steenrod algebra A* is the tensor product of the polynomial algebra in generators ξk of degree 2pk - 2 (k≥1) and the exterior algebra in generators τk of degree 2pk - 1 (k≥0). The monomial basis for A* then gives another choice of basis for A, called the Milnor basis. The dual to the Steenrod algebra is often more convenient to work with, because the multiplication is (super) commutative. The comultiplication for A* is the dual of the product on A; it is given by
- where ξ0=1, and
- if p>2
The only primitive elements of A* for p=2 are the, and these are dual to the (the only indecomposables of A).
Read more about this topic: Steenrod Algebra
Famous quotes containing the words algebra, structure and/or basis:
“Poetry has become the higher algebra of metaphors.”
—José Ortega Y Gasset (18831955)
“It is difficult even to choose the adjective
For this blank cold, this sadness without cause.
The great structure has become a minor house.
No turban walks across the lessened floors.
The greenhouse never so badly needed paint.”
—Wallace Stevens (18791955)
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)