Steenrod Algebra - Cohomology Operations

Cohomology Operations

A cohomology operation is a natural transformation between cohomology functors. For example, if we take cohomology with coefficients in a ring, the cup product squaring operation yields a family of cohomology operations:

Cohomology operations need not be homomorphisms of graded rings, see the Cartan formula below.

These operations do not commute with suspension, that is they are unstable. (This is because if Y is a suspension of a space X, the cup product on the cohomology of Y is trivial.) Norman Steenrod constructed stable operations

for all i greater than zero. The notation Sq and their name, the Steenrod squares, comes from the fact that Sqn restricted to classes of degree n is the cup square. There are analogous operations for odd primary coefficients, usually denoted Pi and called the reduced p-th power operations. The Sqi generate a connected graded algebra over Z/2, where the multiplication is given by composition of operations. This is the mod 2 Steenrod algebra. In the case p > 2, the mod p Steenrod algebra is generated by the Pi and the Bockstein operation β associated to the short exact sequence

In the case p=2, the Bockstein element is Sq1 and the reduced p-th power Pi is Sq2i.

Read more about this topic:  Steenrod Algebra

Famous quotes containing the word operations:

    It may seem strange that any road through such a wilderness should be passable, even in winter, when the snow is three or four feet deep, but at that season, wherever lumbering operations are actively carried on, teams are continually passing on the single track, and it becomes as smooth almost as a railway.
    Henry David Thoreau (1817–1862)