Cohomology Operations
A cohomology operation is a natural transformation between cohomology functors. For example, if we take cohomology with coefficients in a ring, the cup product squaring operation yields a family of cohomology operations:
Cohomology operations need not be homomorphisms of graded rings, see the Cartan formula below.
These operations do not commute with suspension, that is they are unstable. (This is because if Y is a suspension of a space X, the cup product on the cohomology of Y is trivial.) Norman Steenrod constructed stable operations
for all i greater than zero. The notation Sq and their name, the Steenrod squares, comes from the fact that Sqn restricted to classes of degree n is the cup square. There are analogous operations for odd primary coefficients, usually denoted Pi and called the reduced p-th power operations. The Sqi generate a connected graded algebra over Z/2, where the multiplication is given by composition of operations. This is the mod 2 Steenrod algebra. In the case p > 2, the mod p Steenrod algebra is generated by the Pi and the Bockstein operation β associated to the short exact sequence
In the case p=2, the Bockstein element is Sq1 and the reduced p-th power Pi is Sq2i.
Read more about this topic: Steenrod Algebra
Famous quotes containing the word operations:
“A sociosphere of contact, control, persuasion and dissuasion, of exhibitions of inhibitions in massive or homeopathic doses...: this is obscenity. All structures turned inside out and exhibited, all operations rendered visible. In America this goes all the way from the bewildering network of aerial telephone and electric wires ... to the concrete multiplication of all the bodily functions in the home, the litany of ingredients on the tiniest can of food, the exhibition of income or IQ.”
—Jean Baudrillard (b. 1929)