Algebraic Construction
Smith (2007) gave the following algebraic construction of the Steenrod algebra over a finite field Fq of order q. If V is a vector space over Fq then write SV for the symmetric algebra of V. There is an algebra homomorphism P(x)
such that
for v∈V, where F is the Frobenius endomorphism of SV. If we put
- (for p>2)
or
- (for p=2)
for f∈SV then if V is infinite dimensional the elements Pi generate an algebra isomorphism to the subalgebra of the Steenrod algebra generated by the reduced p′th powers for p odd, or the even Steenrod squares Sq2i for p=2.
Read more about this topic: Steenrod Algebra
Famous quotes containing the words algebraic and/or construction:
“I have no scheme about it,no designs on men at all; and, if I had, my mode would be to tempt them with the fruit, and not with the manure. To what end do I lead a simple life at all, pray? That I may teach others to simplify their lives?and so all our lives be simplified merely, like an algebraic formula? Or not, rather, that I may make use of the ground I have cleared, to live more worthily and profitably?”
—Henry David Thoreau (18171862)
“The construction of life is at present in the power of facts far more than convictions.”
—Walter Benjamin (18921940)