Static Spacetime

Static Spacetime

In general relativity, a spacetime is said to be static if it admits a global, non-vanishing, timelike Killing vector field which is irrotational, i.e., whose orthogonal distribution is involutive. (Note that the leaves of the associated foliation are necessarily space-like hypersurfaces.) Thus a static spacetime is a stationary spacetime satisfying this additional integrability condition. These spacetimes form one of the simplest classes of Lorentzian manifolds.

Locally, every static spacetime looks like a standard static spacetime which is a Lorentzian warped product R S with a metric of the form, where R is the real line, is a (positive definite) metric and is a positive function on the Riemannian manifold S.

In such a local coordinate representation the Killing field may be identified with and S, the manifold of -trajectories, may be regarded as the instantaneous 3-space of stationary observers. If is the square of the norm of the Killing vector field, both and are independent of time (in fact ). It is from the latter fact that a static spacetime obtains its name, as the geometry of the space-like slice S does not change over time.

Read more about Static Spacetime:  Examples of Static Spacetimes