In the theory of discrete dynamical systems, a state space is a directed graph where each possible state of a dynamical system is represented by a vertex, and there is a directed edge from a to b if and only if ƒ(a) = b where the function f defines the dynamical system.
State spaces are useful in computer science as a simple model of machines. Formally, a state space can be defined as a tuple where:
- N is a set of states
- A is a set of arcs connecting the states
- S is a nonempty subset of N that contains start states
- G is a nonempty subset of N that contains the goal states.
A state space has some common properties:
- complexity, where branching factor is important
- structure of the space, see also graph theory:
- directionality of arcs
- tree
- rooted graph
In a computer program, when the effective state space is small compared to all reachable states, this is referred to as clumping. Software such as LURCH analyzes such situations.
State space search explores a state space.
Famous quotes containing the words state and/or space:
“If you have a message you want to send to hell, give it to me; Ill carry it!”
—Administration in the State of Sout, U.S. public relief program (1935-1943)
“Play is a major avenue for learning to manage anxiety. It gives the child a safe space where she can experiment at will, suspending the rules and constraints of physical and social reality. In play, the child becomes master rather than subject.... Play allows the child to transcend passivity and to become the active doer of what happens around her.”
—Alicia F. Lieberman (20th century)