Standard Enthalpy of Formation - Mechanics

Mechanics

The standard enthalpy of formation is equivalent to the sum of many separate processes included in the Born-Haber cycle of synthesis reactions. For example, to calculate the standard enthalpy of formation of sodium chloride, we use the following reaction:

Na(s) + (1/2)Cl2(g) → NaCl(s)

This process is made of many separate sub-processes, each with their own enthalpies. Therefore, we must take into account:

  1. The standard enthalpy of atomization of solid sodium
  2. The first ionization energy of gaseous sodium
  3. The standard enthalpy of atomization of chlorine gas
  4. The electron affinity of chlorine atoms
  5. The lattice enthalpy of sodium chloride

The sum of all these values will give the standard enthalpy of formation of sodium chloride.

Additionally, applying Hess's Law shows that the sum of the individual reactions corresponding to the enthalpy change of formation for each substance in the reaction is equal to the enthalpy change of the overall reaction, regardless of the number of steps or intermediate reactions involved. This is because enthalpy is a state function. In the example above the standard enthalpy change of formation for sodium chloride is equal to the sum of the standard enthalpy change of formation for each of the steps involved in the process. This is especially useful for very long reactions with many intermediate steps and compounds.

Chemists may use standard enthalpies of formation for a reaction that is hypothetical. For instance carbon and hydrogen will not directly react to form methane, yet the standard enthalpy of formation for methane is determined to be -74.8 kJ mol−1 from using other known standard enthalpies of reaction with Hess's law. That it is negative shows that the reaction, if it were to proceed, would be exothermic; that is, it is enthalpically more stable than hydrogen gas and carbon.

It is possible to predict heat of formations for simple unstrained organic compounds with the Heat of formation group additivity method.

Read more about this topic:  Standard Enthalpy Of Formation

Famous quotes containing the word mechanics:

    It is only the impossible that is possible for God. He has given over the possible to the mechanics of matter and the autonomy of his creatures.
    Simone Weil (1909–1943)

    the moderate Aristotelian city
    Of darning and the Eight-Fifteen, where Euclid’s geometry
    And Newton’s mechanics would account for our experience,
    And the kitchen table exists because I scrub it.
    —W.H. (Wystan Hugh)