Relationship Between Standard Deviation and Mean
The mean and the standard deviation of a set of data are usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point. The precise statement is the following: suppose x1, ..., xn are real numbers and define the function:
Using calculus or by completing the square, it is possible to show that σ(r) has a unique minimum at the mean:
Variability can also be measured by the coefficient of variation, which is the ratio of the standard deviation to the mean. It is a dimensionless number.
Often, we want some information about the precision of the mean we obtained. We can obtain this by determining the standard deviation of the sampled mean. The standard deviation of the mean is related to the standard deviation of the distribution by:
where N is the number of observations in the sample used to estimate the mean. This can easily be proven with:
hence
Resulting in:
Read more about this topic: Standard Deviation
Famous quotes containing the words relationship between, relationship and/or standard:
“The proper aim of education is to promote significant learning. Significant learning entails development. Development means successively asking broader and deeper questions of the relationship between oneself and the world. This is as true for first graders as graduate students, for fledging artists as graying accountants.”
—Laurent A. Daloz (20th century)
“Whatever may be our just grievances in the southern states, it is fitting that we acknowledge that, considering their poverty and past relationship to the Negro race, they have done remarkably well for the cause of education among us. That the whole South should commit itself to the principle that the colored people have a right to be educated is an immense acquisition to the cause of popular education.”
—Fannie Barrier Williams (18551944)
“I dont have any problem with a reporter or a news person who says the President is uninformed on this issue or that issue. I dont think any of us would challenge that. I do have a problem with the singular focus on this, as if thats the only standard by which we ought to judge a president. What we learned in the last administration was how little having an encyclopedic grasp of all the facts has to do with governing.”
—David R. Gergen (b. 1942)