Standard Conjectures On Algebraic Cycles - The Hodge Standard Conjecture

The Hodge Standard Conjecture

The Hodge standard conjecture is modelled on the Hodge index theorem. It states the positive definiteness of the cup product pairing on primitive algebraic cohomology classes. If it holds, then the Lefschetz conjecture implies Conjecture D. In characteristic zero the Hodge standard conjecture holds, being a consequence of Hodge theory. In positive characteristic the Hodge standard conjecture is known only for surfaces.

The Hodge standard conjecture is not to be confused with the Hodge conjecture which states that for smooth projective varieties over C, every rational (p,p)-class is algebraic. The Hodge conjecture implies the Lefschetz conjecture and conjecture D for varieties over fields of characteristic zero. Likewise for fields of finite characteristic the Tate conjectures in ℓ-adic cohomology imply the Lefschetz conjecture.

Read more about this topic:  Standard Conjectures On Algebraic Cycles

Famous quotes containing the words standard and/or conjecture:

    There is a certain standard of grace and beauty which consists in a certain relation between our nature, such as it is, weak or strong, and the thing which pleases us. Whatever is formed according to this standard pleases us, be it house, song, discourse, verse, prose, woman, birds, rivers, trees, room, dress, and so on. Whatever is not made according to this standard displeases those who have good taste.
    Blaise Pascal (1623–1662)

    What these perplexities of my uncle Toby were,—’tis impossible for you to guess;Mif you could,—I should blush ... as an author; inasmuch as I set no small store by myself upon this very account, that my reader has never yet been able to guess at any thing. And ... if I thought you was able to form the least ... conjecture to yourself, of what was to come in the next page,—I would tear it out of my book.
    Laurence Sterne (1713–1768)