Stack (descent Theory) - Examples

Examples

  • If the fibers of a stack are sets (meaning categories whose only morphisms are identity maps) then the stack is essentially the same as a sheaf of sets. This shows that a stack is a sort of generalization of a sheaf, taking values in arbitrary categories rather than sets.
  • The stack of vector bundles on topological spaces. The condition that this is a fibered category just means that one can take pullbacks of vector bundles over continuous maps of topological spaces, and the condition that a descent datum is effective essentially means that one can construct a vector bundle over a space by gluing together vector bundles on elements of an open cover.
  • The stack of quasi-coherent sheaves on schemes (with respect to the fpqc-topology and weaker topologies)
  • The stack of affine schemes on a base scheme (again with respect to the fpqc topology or a weaker one)
  • The moduli stack of stable curves.

Read more about this topic:  Stack (descent Theory)

Famous quotes containing the word examples:

    No rules exist, and examples are simply life-savers answering the appeals of rules making vain attempts to exist.
    André Breton (1896–1966)

    In the examples that I here bring in of what I have [read], heard, done or said, I have refrained from daring to alter even the smallest and most indifferent circumstances. My conscience falsifies not an iota; for my knowledge I cannot answer.
    Michel de Montaigne (1533–1592)

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)