Stable Vector Bundle - Stable Vector Bundles Over Projective Varieties

Stable Vector Bundles Over Projective Varieties

If X is a smooth projective variety of dimension n and H is a hyperplane section, then a vector bundle (or torsionfree sheaf) W is called stable if

for all proper non-zero subbundles (or subsheaves) V of W, where denotes the Euler characteristic of an algebraic vector bundle and the vector bundle means the n-th twist of V by H. W is called semistable if the above holds with < replaced by ≤.

There are also other variants in the literature: cf. this thesis p.29.

Read more about this topic:  Stable Vector Bundle

Famous quotes containing the words stable, bundles and/or varieties:

    You mustn’t look in my novel for the old stable ego of the character. There is another ego, according to whose action the individual is unrecognisable.
    —D.H. (David Herbert)

    He bundles every forkful in its place,
    And tags and numbers it for future reference,
    So he can find and easily dislodge it
    In the unloading. Silas does that well.
    He takes it out in bunches like birds’ nests.
    Robert Frost (1874–1963)

    Now there are varieties of gifts, but the same Spirit; and there are varieties of services, but the same Lord; and there are varieties of activities, but it is the same God who activates all of them in everyone.
    Bible: New Testament, 1 Corinthians 12:4-6.