Stable Vector Bundles Over Projective Varieties
If X is a smooth projective variety of dimension n and H is a hyperplane section, then a vector bundle (or torsionfree sheaf) W is called stable if
for all proper non-zero subbundles (or subsheaves) V of W, where denotes the Euler characteristic of an algebraic vector bundle and the vector bundle means the n-th twist of V by H. W is called semistable if the above holds with < replaced by ≤.
There are also other variants in the literature: cf. this thesis p.29.
Read more about this topic: Stable Vector Bundle
Famous quotes containing the words stable, bundles and/or varieties:
“In verity ... we are the poor. This humanity we would claim for ourselves is the legacy, not only of the Enlightenment, but of the thousands and thousands of European peasants and poor townspeople who came here bringing their humanity and their sufferings with them. It is the absence of a stable upper class that is responsible for much of the vulgarity of the American scene. Should we blush before the visitor for this deficiency?”
—Mary McCarthy (19121989)
“He bundles every forkful in its place,
And tags and numbers it for future reference,
So he can find and easily dislodge it
In the unloading. Silas does that well.
He takes it out in bunches like birds nests.”
—Robert Frost (18741963)
“Now there are varieties of gifts, but the same Spirit; and there are varieties of services, but the same Lord; and there are varieties of activities, but it is the same God who activates all of them in everyone.”
—Bible: New Testament, 1 Corinthians 12:4-6.