Stable Module Category - Definition

Definition

Let R be a ring. For two modules M and N, define to be the set of R-linear maps from M to N modulo the relation that f ~ g if fg factors through a projective module. The stable module category is defined by setting the objects to be the R-modules, and the morphisms are the equivalence classes .

Given a module M, let P be a projective module with a surjection . Then set to be the kernel of p. Suppose we are given a morphism and a surjection where Q is projective. Then one can lift f to a map which maps into . This gives a well-defined functor from the stable module category to itself.

For certain rings, such as Frobenius algebras, is an equivalence of categories. In this case, the inverse can be defined as follows. Given M, find an injective module I with an inclusion . Then is defined to be the cokernel of i. A case of particular interest is when the ring R is a group algebra.

The functor Ω−1 can even be defined on the module category of a general ring (without factoring out projectives), as the cokernel of the injective envelope. It need not be true in this case that the functor Ω−1 is actually an inverse to Ω. One important property of the stable module category is it allows defining the Ω functor for general rings. When R is perfect (or M is finitely generated and R is semiperfect), then Ω(M) can be defined as the kernel of the projective cover, giving a functor on the module category. However, in general projective covers need not exist, and so passing to the stable module category is necessary.

Read more about this topic:  Stable Module Category

Famous quotes containing the word definition:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)