Relation Between Pauli Group and Binary Vectors
A simple but useful mapping exists between elements of and the binary vector space . This mapping gives a simplification of quantum error correction theory. It represents quantum codes with binary vectors and binary operations rather than with Pauli operators and matrix operations respectively.
We first give the mapping for the one-qubit case. Suppose is a set of equivalence classes of an operator that have the same phase:
Let be the set of phase-free Pauli operators where . Define the map as
Suppose . Let us employ the shorthand and where, . For example, suppose . Then . The map induces an isomorphism
because addition of vectors in is equivalent to multiplication of Pauli operators up to a global phase:
Let denote the symplectic product between two elements :
The symplectic product gives the commutation relations of elements of :
The symplectic product and the mapping thus give a useful way to phrase Pauli relations in terms of binary algebra. The extension of the above definitions and mapping to multiple qubits is straightforward. Let denote an arbitrary element of . We can similarly define the phase-free -qubit Pauli group where
The group operation for the above equivalence class is as follows:
The equivalence class forms a commutative group under operation . Consider the -dimensional vector space
It forms the commutative group with operation defined as binary vector addition. We employ the notation to represent any vectors respectively. Each vector and has elements
and respectively with similar representations for and . The \textit{symplectic product} of and is
or
where and . Let us define a map
as follows:
Let
so that and belong to the same equivalence class:
The map is an isomorphism for the same reason given as the previous case:
where . The symplectic product captures the commutation relations of any operators and :
The above binary representation and symplectic algebra are useful in making the relation between classical linear error correction and quantum error correction more explicit.
Read more about this topic: Stabilizer Code
Famous quotes containing the words relation between, relation and/or group:
“There is a relation between the hours of our life and the centuries of time. As the air I breathe is drawn from the great repositories of nature, as the light on my book is yielded by a star a hundred millions of miles distant, as the poise of my body depends on the equilibrium of centrifugal and centripetal forces, so the hours should be instructed by the ages and the ages explained by the hours.”
—Ralph Waldo Emerson (18031882)
“Parents ought, through their own behavior and the values by which they live, to provide direction for their children. But they need to rid themselves of the idea that there are surefire methods which, when well applied, will produce certain predictable results. Whatever we do with and for our children ought to flow from our understanding of and our feelings for the particular situation and the relation we wish to exist between us and our child.”
—Bruno Bettelheim (20th century)
“The trouble with tea is that originally it was quite a good drink. So a group of the most eminent British scientists put their heads together, and made complicated biological experiments to find a way of spoiling it. To the eternal glory of British science their labour bore fruit.”
—George Mikes (b. 1912)