Mathematical Background
The Stabilizer formalism exploits elements of the Pauli group in formulating quantum error-correcting codes. The set consists of the Pauli operators:
The above operators act on a single qubit---a state represented by a vector in a two-dimensional Hilbert space. Operators in have eigenvalues and either commute or anti-commute. The set consists of -fold tensor products of Pauli operators:
Elements of act on a quantum register of qubits. We occasionally omit tensor product symbols in what follows so that
The -fold Pauli group plays an important role for both the encoding circuit and the error-correction procedure of a quantum stabilizer code over qubits.
Read more about this topic: Stabilizer Code
Famous quotes containing the words mathematical and/or background:
“As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.”
—Blaise Pascal (16231662)
“Silence is the universal refuge, the sequel to all dull discourses and all foolish acts, a balm to our every chagrin, as welcome after satiety as after disappointment; that background which the painter may not daub, be he master or bungler, and which, however awkward a figure we may have made in the foreground, remains ever our inviolable asylum, where no indignity can assail, no personality can disturb us.”
—Henry David Thoreau (18171862)