Stability Constants of Complexes - Applications

Applications

Stability constant values are exploited in a wide variety of applications. Chelation therapy is used in the treatment of various metal-related illnesses, such as iron overload in β-thalassemia sufferers who have been given blood transfusions. The ideal ligand binds to the target metal ion and not to others, but this degree of selectivity is very hard to achieve. The synthetic drug Deferiprone achieves selectivity by having two oxygen donor atoms so that it binds to Fe3+ in preference to any of the other divalent ions that are present in the human body, such as Mg2+, Ca2+ and Zn2+. Treatment of poisoning by ions such as Pb2+ and Cd2+ is much more difficult since these are both divalent ions and selectivity is harder to accomplish. Excess copper in Wilson's disease can be removed by penicillamine or Triethylene tetramine (TETA). DTPA has been approved by the U.S. Food and Drug Administration for treatment of plutonium poisoning.

DTPA is also used as a complexing agent for gadolinium in MRI contrast enhancement. The requirement in this case is that the complex be very strong, as Gd3+ is very toxic. The large stability constant of the octadentate ligand ensures that the concentration of free Gd3+ is almost negligible, certainly well below toxicity threshold. In addition the ligand occupies only 8 of the 9 coordination sites on the gadolinium ion. The ninth site is occupied by a water molecule which exchanges rapidly with the fluid surrounding it and it is this mechanism that makes the paramagnetic complex into a contrast reagent.

EDTA forms such strong complexes with most divalent cations that it finds many uses. For example, it is often present in washing powder to act as a water softener by sequestering calcium and magnesium ions.

The selectivity of macrocyclic ligands can be used as a basis for the construction of an ion selective electrode. For example, potassium selective electrodes are available that make use of the naturally-occurring macrocyclic antibiotic valinomycin.

Deferiprone penicillamine triethylenetetramine, TETA Ethylenediamine tetracetic acid, EDTA
diethylenetriaminepentacetic acid, DTPA Valinomycin tri-n-butylphosphate

An ion-exchange resin such as chelex 100, which contains chelating ligands bound to a polymer, can be used in water softeners and in chromatographic separation techniques. In solvent extraction the formation of electrically-neutral complexes allows cations to be extracted into organic solvents. For example, in nuclear fuel reprocessing uranium(VI) and plutonium(VI) are extracted into kerosene as the complexes (TBP = tri-'n-butyl phosphate). In phase-transfer catalysis, a substance which is insoluble in an organic solvent can be made soluble by addition of a suitable ligand. For example, potassium permanganate oxidations can be achieved by adding a catalytic quantity of a crown ether and a small amount of organic solvent to the aqueous reaction mixture, so that the oxidation reaction occurs in the organic phase.

In all these examples, the ligand is chosen on the basis of the stability constants of the complexes formed. For example, TBP is used in nuclear fuel reprocessing because (among other reasons) it forms a complex strong enough for solvent extraction to take place, but weak enough that the complex can be destroyed by nitric acid to recover the uranyl cation as nitrato complexes, such as 2- back in the aqueous phase.

Read more about this topic:  Stability Constants Of Complexes