Spinors in Three Dimensions - Reality Structures

Reality Structures

The differences between these two signatures can be codified by the notion of a reality structure on the space of spinors. Informally, this is a prescription for taking a complex conjugate of a spinor, but in such a way that this may not correspond to the usual conjugate per the components of a spinor. Specifically, a reality structure is specified by a Hermitian 2 × 2 matrix K whose product with itself is the identity matrix: K2 = Id. The conjugate of a spinor with respect to a reality structure K is defined by

The particular form of the inner product on vectors (e.g., (4) or (4′)) determines a reality structure (up to a factor of -1) by requiring

, whenever X is a matrix associated to a real vector.

Thus K = i C is the reality structure in Euclidean signature (4), and K = Id is that for signature (4′). With a reality structure in hand, one has the following results:

  • X is the matrix associated to a real vector if, and only if, .
  • If μ and ξ is a spinor, then the inner product
determines a Hermitian form which is invariant under proper orthogonal transformations.

Read more about this topic:  Spinors In Three Dimensions

Famous quotes containing the words reality and/or structures:

    Television is actually closer to reality than anything in books. The madness of TV is the madness of human life.
    Camille Paglia (b. 1947)

    If there are people who feel that God wants them to change the structures of society, that is something between them and their God. We must serve him in whatever way we are called. I am called to help the individual; to love each poor person. Not to deal with institutions. I am in no position to judge.
    Mother Teresa (b. 1910)