A spin structure on an orientable Riemannian manifold (M,g) is an equivariant lift of the oriented orthonormal frame bundle FSO(M) → M with respect to the double covering ρ: Spin(n) → SO(n). In other words, a pair (P,FP) is a spin structure on the principal bundle π: FSO(M) → M when
- a) πP: P → M is a principal Spin(n)-bundle over M,
- b) FP: P → FSO(M) is an equivariant 2-fold covering map such that
-
- and FP(p q) = FP(p)ρ(q) for all p ∈ P and q ∈ Spin(n).
The principal bundle πP: P → M is also called the bundle of spin frames over M.
Two spin structures (P1, FP1) and (P2, FP2) on the same oriented Riemannian manifold (M,g) are called equivalent if there exists a Spin(n)-equivariant map f: P1 → P2 such that
- and f(p q) = f(p)q for all and q ∈ Spin(n).
Of course, in this case and are two equivalent double coverings of the oriented orthonormal frame SO(n)-bundle FSO(M) → M of the given Riemannian manifold (M,g).
This definition of spin structure on (M,g) as a spin structure on the principal bundle FSO(M) → M is due to André Haefliger (1956).
Read more about Spin Structure: Spin Structures On Vector Bundles, Spinc Structures, Vector Structures
Famous quotes containing the words spin and/or structure:
“In tragic life, God wot,
No villain need be! Passions spin the plot:
We are betrayed by what is false within.”
—George Meredith (18281909)
“There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.”
—Donald Davidson (b. 1917)