Spin Connection - Applications

Applications

The spin connection arises in the Dirac equation when expressed in the language of curved spacetime. Specifically there are problems coupling gravity to spinor fields: there are no finite dimensional spinor representations of the general covariance group. However, there are of course spinorial representations of the Lorentz group. This fact is utilized by employing tetrad fields describing a flat tangent space at every point of spacetime. The Dirac matrices are contracted onto vierbiens,

.

We wish to construct a generally covariant Dirac equation. Under a flat tangent space Lorentz transformation the spinor transforms as

We have introduced local Lorentz transformatins on flat tangent space, so is a function of space-time. This means that the partial derivative of a spinor is no longer a genuine tensor. As usual, one introduces a connection field that allows us to gauge the Lorentz group. The covariant derivative defined with the spin connection is,

,

and is a genuine tensor and Dirac's equation is rewritten as

.

The generally covariant fermion action couples fermions to gravity when added to the first order tetradic Palatini action,

where and is the curvature of the spin connection.

The tetradic Palatini formulation of general relativity which is a first order formulation of the Einstein-Hilbert action where the tetrad and the spin connection are the basic independent variables. In the 3+1 version of Palatini formulation, the information about the spatial metric, is encoded in the triad (three dimensional, spatial version of the tetrad). Here we extend the metric compatibility condition to, that is, and we obtain a formula similar to the one given above but for the spatial spin connection .

The spatial spin connection appears in the definition of Ashtekar-Barbero variables which allows 3+1 general relativity to be rewritten as a special type of Yang-Mills gauge theory. One defines . The Ashtekar-Barbero connection variable is then defined as where and is the extrinsic curvature. With as the configuration variable, the conjugate momentum is the densitized triad . With 3+1 general relativity rewritten as a special type of Yang-Mills gauge theory, it allows the importation of non-perturbative techniques used in Quantum chromodynamics to canonical quantum general relativity.

Read more about this topic:  Spin Connection