Spin-flip - Physics of Spin-Flips

Physics of Spin-Flips

A spin-flip is a late stage in the evolution of a binary black hole. The binary consists of two black holes, with masses and, that revolve around their common center of mass. The total angular momentum of the binary system is the sum of the angular momentum of the orbit, plus the spin angular momenta of the two holes:


\mathbf{J}_{\rm init} = \mathbf{L}_{\rm orb} + \mathbf{S}_1 + \mathbf{S}_2.

If the orbital separation is sufficiently small, emission of energy and angular momentum in the form of gravitational radiation will cause the orbital separation to drop. Eventually, the smaller hole reaches the innermost stable circular orbit, or ISCO, around the larger hole. Once the ISCO is reached, there no longer exists a stable orbit, and the smaller hole plunges into the larger hole, coalescing with it. The final angular momentum after coalescence is just


\mathbf{J}_{\rm final} = \mathbf{S},

the spin angular momentum of the single, coalesced hole. Neglecting the angular momentum that is carried away by gravitational waves during the final plunge—which is small -- conservation of angular momentum implies


\mathbf{S} \approx \mathbf{L}_{\rm ISCO} + \mathbf{S}_1 + \mathbf{S}_2.

is of order times and can be ignored if is much smaller than . Making this approximation,


\mathbf{S} \approx \mathbf{L}_{\rm ISCO} + \mathbf{S}_1.

This equation states that the final spin of the hole is the sum of the larger hole's initial spin plus the orbital angular momentum of the smaller hole at the last stable orbit. Since the vectors and are generically oriented in different directions, will point in a different direction than -- a spin-flip.

The angle by which the black hole's spin re-orients itself depends on the relative size of and, and on the angle between them. At one extreme, if is very small, the final spin will be dominated by and the flip angle can be large. At the other extreme, the larger black hole might be a maximally-rotating Kerr black hole initially. Its spin angular momentum is then of order


S_1 \approx GM_1^2/c.

The orbital angular momentum of the smaller hole at the ISCO depends on the direction of its orbit, but is of order

 L_{\rm ISCO} \approx GM_1M_2/c.

Comparing these two expressions, it follows that even a fairly small hole, with mass about one-fifth that of the larger hole, can reorient the larger hole by 90 degrees or more.

Read more about this topic:  Spin-flip

Famous quotes containing the word physics:

    It is hardly to be believed how spiritual reflections when mixed with a little physics can hold people’s attention and give them a livelier idea of God than do the often ill-applied examples of his wrath.
    —G.C. (Georg Christoph)