Spherulite (polymer Physics)

Spherulite (polymer Physics)

In polymer physics, spherulites (from Greek sphaira = ball and lithos = stone) are spherical semicrystalline regions inside non-branched linear polymers. Their formation is associated with crystallization of polymers from the melt and is controlled by several parameters such as the number of nucleation sites, structure of the polymer molecules, cooling rate, etc. Depending on those parameters, spherulite diameter may vary in a wide range from a few micrometers to millimeters. Spherulites are composed of highly ordered lamellae, which result in higher density, hardness, but also brittleness of the spherulites as compared to disordered polymer. The lamellae are connected by amorphous regions which provide certain elasticity and impact resistance. Alignment of the polymer molecules within the lamellae results in birefringence producing a variety of colored patterns, including Maltese cross, when spherulites are viewed between crossed polarizers in an optical microscope.

Read more about Spherulite (polymer Physics):  Formation, See Also