Spherical Multipole Moments - General Spherical Multipole Moments

General Spherical Multipole Moments

It is straightforward to generalize these formulae by replacing the point charge with an infinitesimal charge element and integrating. The functional form of the expansion is the same


\Phi(\mathbf{r}) =
\frac{1}{4\pi\varepsilon}
\sum_{l=0}^{\infty} \sum_{m=-l}^{l}
\left( \frac{Q_{lm}}{r^{l+1}} \right)
\sqrt{\frac{4\pi}{2l+1}} Y_{lm}(\theta, \phi)

where the general multipole moments are defined


Q_{lm} \ \stackrel{\mathrm{def}}{=}\
\int d\mathbf{r}^{\prime} \rho(\mathbf{r}^{\prime})
\left( r^{\prime} \right)^{l}
\sqrt{\frac{4\pi}{2l+1}}
Y_{lm}^{*}(\theta^{\prime}, \phi^{\prime})

Read more about this topic:  Spherical Multipole Moments

Famous quotes containing the words general and/or moments:

    The first general store opened on the ‘Cold Saturday’ of the winter of 1833 ... Mrs. Mary Miller, daughter of the store’s promoter, recorded in a letter: ‘Chickens and birds fell dead from their roosts, cows ran bellowing through the streets’; but she failed to state what effect the freeze had on the gala occasion of the store opening.
    —Administration in the State of Sout, U.S. public relief program (1935-1943)

    Athletes have studied how to leap and how to survive the leap some of the time and return to the ground. They don’t always do it well. But they are our philosophers of actual moments and the body and soul in them, and of our manoeuvres in our emergencies and longings.
    Harold Brodkey (b. 1930)