Spectrum of A Matrix - Definition

Definition

Let V be a finite-dimensional vector space over some field K and suppose T: VV is a linear map. An eigenvector of T is a non-zero vector xV such that Txx for some λ∈K. The value λ is called an eigenvalue of T and the set of all such eigenvalues is called the spectrum of T, denoted σT.

Now, fix a basis B of V over K and suppose M∈MatK(V) is a matrix. Define the linear map T: VV point-wise by Tx=Mx, where on the right-hand side x is interpreted as a column vector and M acts on x by matrix multiplication. We now say that xV is an eigenvector of M if x is an eigenvector of T. Similarly, λ∈K is an eigenvalue of M if it is an eigenvalue of T and the spectrum of M, written σM, is the set of all such eigenvalues.


Read more about this topic:  Spectrum Of A Matrix

Famous quotes containing the word definition:

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)