Specker Sequence

In computability theory, a Specker sequence is a computable, strictly increasing, bounded sequence of rational numbers whose supremum is not a computable real number. The first example of such a sequence was constructed by Ernst Specker in 1949.

The existence of Specker sequences has consequences for computable analysis. The fact that such sequences exist means that the collection of all computable real numbers does not satisfy the least upper bound principle of real analysis, even when considering only computable sequences. A common way to resolve this difficulty is to consider only sequences that are accompanied by a modulus of convergence; no Specker sequence has a computable modulus of convergence.

The least upper bound principle has also been analyzed in the program of reverse mathematics, where the exact strength of this principle has been determined. In the terminology of that program, the least upper bound principle is equivalent to ACA0 over RCA0.

Read more about Specker Sequence:  Construction

Famous quotes containing the word sequence:

    We have defined a story as a narrative of events arranged in their time-sequence. A plot is also a narrative of events, the emphasis falling on causality. “The king died and then the queen died” is a story. “The king died, and then the queen died of grief” is a plot. The time sequence is preserved, but the sense of causality overshadows it.
    —E.M. (Edward Morgan)