Generalized Special Unitary Group
For a field F, the generalized special unitary group over F, SU(p, q; F), is the group of all linear transformations of determinant 1 of a vector space of rank n = p + q over F which leave invariant a nondegenerate, Hermitian form of signature (p, q). This group is often referred to as the special unitary group of signature p q over F. The field F can be replaced by a commutative ring, in which case the vector space is replaced by a free module.
Specifically, fix a Hermitian matrix A of signature p q in GL(n, R), then all
satisfy
Often one will see the notation SU(p, q) without reference to a ring or field, in this case the ring or field being referred to is C and this gives one of the classical Lie groups. The standard choice for A when F = C is
However there may be better choices for A for certain dimensions which exhibit more behaviour under restriction to subrings of C.
Read more about this topic: Special Unitary Group
Famous quotes containing the words generalized, special and/or group:
“One is conscious of no brave and noble earnestness in it, of no generalized passion for intellectual and spiritual adventure, of no organized determination to think things out. What is there is a highly self-conscious and insipid correctness, a bloodless respectability submergence of matter in mannerin brief, what is there is the feeble, uninspiring quality of German painting and English music.”
—H.L. (Henry Lewis)
“The books may say that nine-month-olds crawl, say their first words, and are afraid of strangers. Your exuberantly concrete and special nine-month-old hasnt read them. She may be walking already, not saying a word and smiling gleefully at every stranger she sees. . . . You can support her best by helping her learn what shes trying to learn, not what the books say a typical child ought to be learning.”
—Amy Laura Dombro (20th century)
“The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.”
—Babette Deutsch (18951982)