Measures of Spatial Dispersion
Dispersion captures the degree to which points in a point set are separated from each other. For most applications, spatial dispersion should be quantified in a way that is invariant to rotations and reflections. Several simple measures of spatial dispersion for a point set can be defined using the covariance matrix of the coordinates of the points. The trace, the determinant, and the largest eigenvalue of the covariance matrix can be used as measures of spatial dispersion.
A measure of spatial dispersion that is not based on the covariance matrix is the average distance between nearest neighbors.
Read more about this topic: Spatial Descriptive Statistics
Famous quotes containing the words measures of, measures and/or dispersion:
“There are other measures of self-respect for a man, than the number of clean shirts he puts on every day.”
—Ralph Waldo Emerson (18031882)
“To have the fear of God before our eyes, and, in our mutual dealings with each other, to govern our actions by the eternal measures of right and wrong:MThe first of these will comprehend the duties of religion;Mthe second, those of morality, which are so inseparably connected together, that you cannot divide these two tables ... without breaking and mutually destroying them both.”
—Laurence Sterne (17131768)
“The slogan offers a counterweight to the general dispersion of thought by holding it fast to a single, utterly succinct and unforgettable expression, one which usually inspires men to immediate action. It abolishes reflection: the slogan does not argue, it asserts and commands.”
—Johan Huizinga (18721945)