Table of Space Groups in 3 Dimensions
# | Crystal system | Point group | Space groups (international short symbol) | |
---|---|---|---|---|
Intl | Schönflies | |||
1 | Triclinic (2) | 1 | C1 Chiral | P1 |
2 | 1 | Ci | P1 | |
3–5 | Monoclinic (13) | 2 | C2 Chiral | P2, P21, C2 |
6–9 | m | Cs | Pm, Pc, Cm, Cc | |
10–15 | 2/m | C2h | P2/m, P21/m, C2/m, P2/c, P21/c, C2/c | |
16–24 | Orthorhombic (59) | 222 | D2 Chiral | P222, P2221, P21212, P212121, C2221, C222, F222, I222, I212121 |
25–46 | mm2 | C2v | Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2, Pmn21, Pba2, Pna21, Pnn2, Cmm2, Cmc21, Ccc2, Amm2, Aem2, Ama2, Aea2, Fmm2, Fdd2, Imm2, Iba2, Ima2 | |
47–74 | mmm | D2h | Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma, Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce, Fmmm, Fddd, Immm, Ibam, Ibca, Imma | |
75–80 | Tetragonal (68) | 4 | C4 Chiral | P4, P41, P42, P43, I4, I41 |
81–82 | 4 | S4 | P4, I4 | |
83–88 | 4/m | C4h | P4/m, P42/m, P4/n, P42/n, I4/m, I41/a | |
89–98 | 422 | D4 Chiral | P422, P4212, P4122, P41212, P4222, P42212, P4322, P43212, I422, I4122 | |
99–110 | 4mm | C4v | P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc, I4mm, I4cm, I41md, I41cd | |
111–122 | 42m | D2d | P42m, P42c, P421m, P421c, P4m2, P4c2, P4b2, P4n2, I4m2, I4c2, I42m, I42d | |
123–142 | 4/mmm | D4h | P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/ncc, P42/mmc, P42/mcm, P42/nbc, P42/nnm, P42/mbc, P42/mnm, P42/nmc, P42/ncm, I4/mmm, I4/mcm, I41/amd, I41/acd | |
143–146 | Trigonal (25) | 3 | C3 Chiral | P3, P31, P32, R3 |
147–148 | 3 | S6 | P3, R3 | |
149–155 | 32 | D3 Chiral | P312, P321, P3112, P3121, P3212, P3221, R32 | |
156–161 | 3m | C3v | P3m1, P31m, P3c1, P31c, R3m, R3c | |
162–167 | 3m | D3d | P31m, P31c, P3m1, P3c1, R3m, R3c, | |
168–173 | Hexagonal (27) | 6 | C6 Chiral | P6, P61, P65, P62, P64, P63 |
174 | 6 | C3h | P6 | |
175–176 | 6/m | C6h | P6/m, P63/m | |
177–182 | 622 | D6 Chiral | P622, P6122, P6522, P6222, P6422, P6322 | |
183–186 | 6mm | C6v | P6mm, P6cc, P63cm, P63mc | |
187–190 | 6m2 | D3h | P6m2, P6c2, P62m, P62c | |
191–194 | 6/mmm | D6h | P6/mmm, P6/mcc, P63/mcm, P63/mmc | |
195–199 | Cubic (36) | 23 | T Chiral | P23, F23, I23, P213, I213 |
200–206 | m3 | Th | Pm3, Pn3, Fm3, Fd3, Im3, Pa3, Ia3 | |
207–214 | 432 | O Chiral | P432, P4232, F432, F4132, I432, P4332, P4132, I4132 | |
215–220 | 43m | Td | P43m, F43m, I43m, P43n, F43c, I43d | |
221–230 | m3m | Oh | Pm3m, Pn3n, Pm3n, Pn3m, Fm3m, Fm3c, Fd3m, Fd3c, Im3m, Ia3d |
Note. An e plane is a double glide plane, one having glides in two different directions. They are found in seven orthorombic, five tetragonal and five cubic space groups, all with centered lattice. The use of the symbol e became official with Hahn (2002).
The lattice system can be found as follows. If the crystal system is not trigonal then the lattice system is of the same type. If the crystal system is trigonal, then the lattice system is hexagonal unless the space group is one of the seven in the rhombohedral lattice system consisting of the 7 trigonal space groups in the table above whose name begins with R. (The term rhombohedral system is also sometimes used as an alternative name for the whole trigonal system.) The hexagonal lattice system is larger than the hexagonal crystal system, and consists of the hexagonal crystal system together with the 18 groups of the trigonal crystal system other than the seven whose names begin with R.
The Bravais lattice of the space group is determined by the lattice system together with the initial letter of its name, which for the non-rhombohedral groups is P, I, F, or C, standing for the principal, body centered, face centered, or C-face centered lattices.
Read more about this topic: Space Group
Famous quotes containing the words table, space, groups and/or dimensions:
“The gingham dog and the calico cat
Side by side on the table sat;”
—Eugene Field (18501895)
“It is not through space that I must seek my dignity, but through the management of my thought. I shall have no more if I possess worlds.”
—Blaise Pascal (16231662)
“Women over fifty already form one of the largest groups in the population structure of the western world. As long as they like themselves, they will not be an oppressed minority. In order to like themselves they must reject trivialization by others of who and what they are. A grown woman should not have to masquerade as a girl in order to remain in the land of the living.”
—Germaine Greer (b. 1939)
“The truth is that a Pigmy and a Patagonian, a Mouse and a Mammoth, derive their dimensions from the same nutritive juices.... [A]ll the manna of heaven would never raise the Mouse to the bulk of the Mammoth.”
—Thomas Jefferson (17431826)