Solubility - Solubility of Gases

Solubility of Gases

Henry's law is used to quantify the solubility of gases in solvents. The solubility of a gas in a solvent is directly proportional to the partial pressure of that gas above the solvent. This relationship is written as:

where kH is a temperature-dependent constant (for example, 769.2 L·atm/mol for dioxygen (O2) in water at 298 K), p is the partial pressure (atm), and c is the concentration of the dissolved gas in the liquid (mol/L).

The solubility of gases is sometimes also quantified using Bunsen solubility coefficient.

In the presence of small bubbles, the solubility of the gas does not depend on the bubble radius in any other way than through the effect of the radius on pressure (i.e., the solubility of gas in the liquid in contact with small bubbles is increased due to pressure increase by Δp = 2γ/r; see Young–Laplace equation).

Henry's law is valid for gases that do not undergo speciation on dissolution. Sieverts' law shows a case when this assumption does not hold.

Read more about this topic:  Solubility

Famous quotes containing the word gases:

    The bird is not in its ounces and inches, but in its relations to Nature; and the skin or skeleton you show me, is no more a heron, than a heap of ashes or a bottle of gases into which his body has been reduced, is Dante or Washington.
    Ralph Waldo Emerson (1803–1882)