Solid-state Laser - Solid-state Media

Solid-state Media

Further information: List of laser types

Generally, the active medium of a solid-state laser consists of a glass or crystalline "host" material to which is added a "dopant" such as neodymium, chromium, erbium, or ytterbium. Many of the common dopants are rare earth elements, because the excited states of such ions are not strongly coupled with the thermal vibrations of their crystal lattices (phonons), and their operational thresholds can be reached at relatively low intensities of laser pumping.

There are many hundreds of solid-state media in which laser action has been achieved, but relatively few types are in widespread use. Of these, probably the most common is neodymium-doped yttrium aluminum garnet (Nd:YAG). Neodymium-doped glass (Nd:glass) and ytterbium-doped glasses or ceramics are used at very high power levels (terawatts) and high energies (megajoules), for multiple-beam inertial confinement fusion.

The first material used for lasers was synthetic ruby crystals. Ruby lasers are still used for a few applications, but they are not common because of their low power efficiencies. At room temperature, ruby lasers emit only short pulses of light, but at cryogenic temperatures they can be made to emit a continuous train of pulses.

Some solid-state lasers can also be tunable using several intracavity techniques which employ etalons, prisms, and gratings, or a combination of these. Titanium-doped sapphire is widely used for its broad tuning range, 660 to 986 nanometers. Alexandrite lasers are tunable from 700 to 820 nm, and they yield higher-energy pulses than titanium-sapphire lasers because of the gain medium's longer energy storage time and higher damage threshold.

Read more about this topic:  Solid-state Laser

Famous quotes containing the word media:

    The corporate grip on opinion in the United States is one of the wonders of the Western World. No First World country has ever managed to eliminate so entirely from its media all objectivity—much less dissent.
    Gore Vidal (b. 1925)