Solar Cell - Materials - Thin Films - Silicon Thin Films

Silicon Thin Films

Silicon thin-film cells are mainly deposited by chemical vapor deposition (typically plasma-enhanced, PE-CVD) from silane gas and hydrogen gas. Depending on the deposition parameters, this can yield:

  1. Amorphous silicon (a-Si or a-Si:H)
  2. Protocrystalline silicon or
  3. Nanocrystalline silicon (nc-Si or nc-Si:H), also called microcrystalline silicon.

It has been found that protocrystalline silicon with a low volume fraction of nanocrystalline silicon is optimal for high open circuit voltage. These types of silicon present dangling and twisted bonds, which results in deep defects (energy levels in the bandgap) as well as deformation of the valence and conduction bands (band tails). The solar cells made from these materials tend to have lower energy conversion efficiency than bulk silicon, but are also less expensive to produce. The quantum efficiency of thin film solar cells is also lower due to reduced number of collected charge carriers per incident photon.

An amorphous silicon (a-Si) solar cell is made of amorphous or microcrystalline silicon and its basic electronic structure is the p-i-n junction. a-Si is attractive as a solar cell material because it is abundant and non-toxic (unlike its CdTe counterpart) and requires a low processing temperature, enabling production of devices to occur on flexible and low-cost substrates. As the amorphous structure has a higher absorption rate of light than crystalline cells, the complete light spectrum can be absorbed with a very thin layer of photo-electrically active material. A film only 1 micron thick can absorb 90% of the usable solar energy. This reduced material requirement along with current technologies being capable of large-area deposition of a-Si, the scalability of this type of cell is high. However, because it is amorphous, it has high inherent disorder and dangling bonds, making it a bad conductor for charge carriers. These dangling bonds act as recombination centers that severely reduce the carrier lifetime and pin the Fermi energy level so that doping the material to n- or p- type is not possible. Amorphous Silicon also suffers from the Staebler-Wronski effect, which results in the efficiency of devices utilizing amorphous silicon dropping as the cell is exposed to light. The production of a-Si thin film solar cells uses glass as a substrate and deposits a very thin layer of silicon by plasma-enhanced chemical vapor deposition (PECVD). A-Si manufacturers are working towards lower costs per watt and higher conversion efficiency with continuous research and development on Multijunction solar cells for solar panels. Anwell Technologies Limited recently announced its target for multi-substrate-multi-chamber PECVD, to lower the cost to US$0.5 per watt.

Amorphous silicon has a higher bandgap (1.7 eV) than crystalline silicon (c-Si) (1.1 eV), which means it absorbs the visible part of the solar spectrum more strongly than the infrared portion of the spectrum. As nc-Si has about the same bandgap as c-Si, the nc-Si and a-Si can advantageously be combined in thin layers, creating a layered cell called a tandem cell. The top cell in a-Si absorbs the visible light and leaves the infrared part of the spectrum for the bottom cell in nc-Si.

Recently, solutions to overcome the limitations of thin-film crystalline silicon have been developed. Light trapping schemes where the weakly absorbed long wavelength light is obliquely coupled into the silicon and traverses the film several times can significantly enhance the absorption of sunlight in the thin silicon films. Minimizing the top contact coverage of the cell surface is another method for reducing optical losses; this approach simply aims at reducing the area that is covered over the cell to allow for maximum light input into the cell. Anti-reflective coatings can also be applied to create destructive interference within the cell. This can be done by modulating the Refractive index of the surface coating; if destructive interference is achieved, there will be no reflective wave and thus all light will be transmitted into the semiconductor cell. Surface texturing is another option, but may be less viable because it also increases the manufacturing price. By applying a texture to the surface of the solar cell, the reflected light can be refracted into striking the surface again, thus reducing the overall light reflected out. Light trapping as another method allows for a decrease in overall thickness of the device; the path length that the light will travel is several times the actual device thickness. This can be achieved by adding a textured backreflector to the device as well as texturing the surface. If both front and rear surfaces of the device meet this criterion, the light will be 'trapped' by not having an immediate pathway out of the device due to internal reflections. Thermal processing techniques can significantly enhance the crystal quality of the silicon and thereby lead to higher efficiencies of the final solar cells. Further advancement into geometric considerations of building devices can exploit the dimensionality of nanomaterials. Creating large, parallel nanowire arrays enables long absorption lengths along the length of the wire while still maintaining short minority carrier diffusion lengths along the radial direction. Adding nanoparticles between the nanowires will allow for conduction through the device. Because of the natural geometry of these arrays, a textured surface will naturally form which allows for even more light to be trapped. A further advantage of this geometry is that these types of devices require about 100 times less material than conventional wafer-based devices.

Read more about this topic:  Solar Cell, Materials, Thin Films

Famous quotes containing the words thin and/or films:

    Twilight and bulb define
    the brown room, the overstuffed plum sofa,
    the boy, and the girl’s thin hands above his head.
    Muriel Rukeyser (1913–1980)

    Does art reflect life? In movies, yes. Because more than any other art form, films have been a mirror held up to society’s porous face.
    Marjorie Rosen (b. 1942)