Related Polyhedra and Tilings
This semiregular tiling is a member of a sequence of snubbed polyhedra and tilings with vertex figure (3.3.3.3.n) and Coxeter–Dynkin diagram . These figures and their duals have (n32) rotational symmetry, being in the Euclidean plane for n=6, and hyperbolic plane for any higher n. The series can be considered to begin with n=2, with one set of faces degenerated into digons.
Symmetry n32 + |
Spherical | Euclidean | Hyperbolic | |||||
---|---|---|---|---|---|---|---|---|
232 + D3 |
332 + T |
432 + O |
532 + I |
632 + P6 |
732 + |
832 + |
∞32 + |
|
Snub figure |
3.3.3.3.2 |
3.3.3.3.3 |
3.3.3.3.4 |
3.3.3.3.5 |
3.3.3.3.6 |
3.3.3.3.7 |
3.3.3.3.8 |
3.3.3.3.∞ |
Coxeter Schläfli |
s{2,3} |
s{3,3} |
s{4,3} |
s{5,3} |
s{6,3} |
s{7,3} |
s{8,3} |
s{∞,3} |
Snub dual figure |
V3.3.3.3.2 |
V3.3.3.3.3 |
V3.3.3.3.4 |
V3.3.3.3.5 |
V3.3.3.3.6 |
V3.3.3.3.7 |
V3.3.3.3.8 | V3.3.3.3.∞ |
Coxeter |
Symmetry:, (*632) | +, (632) | , (*333) | , (3*3) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
{6,3} | t0,1{6,3} | t1{6,3} | t1,2{6,3} | t2{6,3} | t0,2{6,3} | t0,1,2{6,3} | s{6,3} | h{6,3} | h1,2{6,3} | |
Uniform duals | ||||||||||
V6.6.6 | V3.12.12 | V3.6.3.6 | V6.6.6 | V3.3.3.3.3.3 | V3.4.12.4 | V.4.6.12 | V3.3.3.3.6 | V3.3.3.3.3.3 |
Read more about this topic: Snub Hexagonal Tiling
Famous quotes containing the word related:
“No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.”
—Isaac Newton (16421727)