SN 1987A - Neutrino Emissions

Neutrino Emissions

Approximately two to three hours before the visible light from SN 1987A reached the Earth, a burst of neutrinos was observed at three separate neutrino observatories. This is likely due to neutrino emission (which occurs simultaneously with core collapse) preceding the emission of visible light (which occurs only after the shock wave reaches the stellar surface). At 7:35 a.m. Universal time, Kamiokande II detected 11 antineutrinos; IMB, 8 antineutrinos; and Baksan, 5 antineutrinos; in a burst lasting less than 13 seconds. Approximately three hours earlier, the Mont Blanc liquid scintillator detected a five-neutrino burst, but this is generally not believed to be associated with SN 1987A.

Although the actual neutrino count was only 24, it was a significant rise from the previously observed background level. This was the first time neutrinos emitted from a supernova had been observed directly, which marked the beginning of neutrino astronomy. The observations were consistent with theoretical supernova models in which 99% of the energy of the collapse is radiated away in neutrinos. The observations are also consistent with the models' estimates of a total neutrino count of 1058 with a total energy of 1046 joules.

The neutrino measurements allowed upper bounds on neutrino mass and charge, as well as the number of flavors of neutrinos and other properties. For example, the data show that within 5% confidence, the rest mass of the electron neutrino is at most 16 eV. The data suggests that the total number of neutrino flavors is at most 8 but other observations and experiments give tighter estimates. Many of these results have since been confirmed or tightened by other neutrino experiments such as more careful analysis of solar neutrinos and atmospheric neutrinos as well as experiments with artificial neutrino sources.

Read more about this topic:  SN 1987A