Smallest Circle Problem

Smallest Circle Problem

The smallest-circle problem or minimum covering circle problem is a mathematical problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane. The corresponding problem in n-dimensional space, the smallest bounding-sphere problem, is to compute the smallest n-sphere that contains all of a given set of points. The smallest-circle problem was initially proposed by the English mathematician James Joseph Sylvester in 1857.

The smallest-circle problem in the plane is an example of a facility location problem in which the location of a new facility must be chosen to provide service to a number of customers, minimizing the farthest distance that any customer must travel to reach the new facility. Both the smallest circle problem in the plane, and the smallest bounding sphere problem in any higher-dimensional space of bounded dimension, may be solved in linear time.

Read more about Smallest Circle Problem:  Characterization, Linear-time Solutions, Other Algorithms, Weighted Variants of The Problem

Famous quotes containing the words smallest, circle and/or problem:

    It might be seen by what tenure men held the earth. The smallest stream is mediterranean sea, a smaller ocean creek within the land, where men may steer by their farm bounds and cottage lights. For my own part, but for the geographers, I should hardly have known how large a portion of our globe is water, my life has chiefly passed within so deep a cove. Yet I have sometimes ventured as far as to the mouth of my Snug Harbor.
    Henry David Thoreau (1817–1862)

    ... [a] girl one day flared out and told the principal “the only mission opening before a girl in his school was to marry one of those candidates [for the ministry].” He said he didn’t know but it was. And when at last that same girl announced her desire and intention to go to college it was received with about the same incredulity and dismay as if a brass button on one of those candidate’s coats had propounded a new method for squaring the circle or trisecting the arc.
    Anna Julia Cooper (1859–1964)

    The problem of the novelist who wishes to write about a man’s encounter with God is how he shall make the experience—which is both natural and supernatural—understandable, and credible, to his reader. In any age this would be a problem, but in our own, it is a well- nigh insurmountable one. Today’s audience is one in which religious feeling has become, if not atrophied, at least vaporous and sentimental.
    Flannery O’Connor (1925–1964)