Smale's Paradox - Proof

Proof

Smale's original proof was indirect: he identified (regular homotopy) classes of immersions of spheres with a homotopy group of the Stiefel manifold. Since the homotopy group that corresponds to immersions of in vanishes, the standard embedding and the inside-out one must be regular homotopic. In principle the proof can be unwound to produce an explicit regular homotopy, but this is not easy to do.

There are several ways of producing explicit examples and mathematical visualization:

  • the method of half-way models: these consist of very special homotopies. This is the original method, first done by Shapiro and Phillips via Boy's surface, later refined by many others. A more recent and definitive refinement (1980s) is minimax eversions, which is a variational method, and consist of special homotopies (they are shortest paths with respect to Willmore energy). The original half-way model homotopies were constructed by hand, and worked topologically but weren't minimal.
  • Thurston's corrugations: this is a topological method and generic; it takes a homotopy and perturbs it so that it becomes a regular homotopy.

Read more about this topic:  Smale's Paradox

Famous quotes containing the word proof:

    If we view our children as stupid, naughty, disturbed, or guilty of their misdeeds, they will learn to behold themselves as foolish, faulty, or shameful specimens of humanity. They will regard us as judges from whom they wish to hide, and they will interpret everything we say as further proof of their unworthiness. If we view them as innocent, or at least merely ignorant, they will gain understanding from their experiences, and they will continue to regard us as wise partners.
    Polly Berrien Berends (20th century)

    It comes to pass oft that a terrible oath, with a swaggering accent sharply twanged off, gives manhood more approbation than ever proof itself would have earned him.
    William Shakespeare (1564–1616)

    If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nation’s greatest strength, will tell their own story to the world.
    Susan B. Anthony (1820–1906)