SL2(R) - Representation Theory

Representation Theory

SL(2,R) is a real, non-compact simple Lie group, and is the split-real form of the complex Lie group SL(2,C). The Lie algebra of SL(2,R), denoted sl(2,R), is the algebra of all real, traceless 2 × 2 matrices. It is the Bianchi algebra of type VIII.

The finite-dimensional representation theory of SL(2,R) is equivalent to the representation theory of SU(2), which is the compact real form of SL(2,C). In particular, SL(2,R) has no nontrivial finite-dimensional unitary representations.

The infinite-dimensional representation theory of SL(2,R) is quite interesting. The group has several families of unitary representations, which were worked out in detail by Gelfand and Naimark (1946), V. Bargmann (1947), and Harish-Chandra (1952).

Read more about this topic:  SL2(R)

Famous quotes containing the word theory:

    There is in him, hidden deep-down, a great instinctive artist, and hence the makings of an aristocrat. In his muddled way, held back by the manacles of his race and time, and his steps made uncertain by a guiding theory which too often eludes his own comprehension, he yet manages to produce works of unquestionable beauty and authority, and to interpret life in a manner that is poignant and illuminating.
    —H.L. (Henry Lewis)