Statement
If x1, x2,..., xd are d complex numbers that are linearly independent over the rational numbers, and y1, y2,...,yl are l complex numbers that are also linearly independent over the rational numbers, and if dl > d + l, then at least one of the following dl numbers is transcendental:
The most interesting case is when d = 3 and l = 2, in which case there are six exponentials, hence the name of the result. The theorem is weaker than the related but thus far unproved four exponentials conjecture, whereby the strict inequality dl > d + l is replaced with dl ≥ d + l, thus allowing d = l = 2.
The theorem can be stated in terms of logarithms by introducing the set L of logarithms of algebraic numbers:
The theorem then says that if λij are elements of L for i = 1, 2 and j = 1, 2, 3, such that λ11, λ12, and λ13 are linearly independent over the rational numbers, and λ11 and λ21 are also linearly independent over the rational numbers, then the matrix
has rank 2.
Read more about this topic: Six Exponentials Theorem
Famous quotes containing the word statement:
“Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasnt written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.”
—Robert Benchley (18891945)
“After the first powerful plain manifesto
The black statement of pistons, without more fuss
But gliding like a queen, she leaves the station.”
—Stephen Spender (19091995)
“If we do take statements to be the primary bearers of truth, there seems to be a very simple answer to the question, what is it for them to be true: for a statement to be true is for things to be as they are stated to be.”
—J.L. (John Langshaw)