Statement
If x1, x2,..., xd are d complex numbers that are linearly independent over the rational numbers, and y1, y2,...,yl are l complex numbers that are also linearly independent over the rational numbers, and if dl > d + l, then at least one of the following dl numbers is transcendental:
The most interesting case is when d = 3 and l = 2, in which case there are six exponentials, hence the name of the result. The theorem is weaker than the related but thus far unproved four exponentials conjecture, whereby the strict inequality dl > d + l is replaced with dl ≥ d + l, thus allowing d = l = 2.
The theorem can be stated in terms of logarithms by introducing the set L of logarithms of algebraic numbers:
The theorem then says that if λij are elements of L for i = 1, 2 and j = 1, 2, 3, such that λ11, λ12, and λ13 are linearly independent over the rational numbers, and λ11 and λ21 are also linearly independent over the rational numbers, then the matrix
has rank 2.
Read more about this topic: Six Exponentials Theorem
Famous quotes containing the word statement:
“Children should know there are limits to family finances or they will confuse we cant afford that with they dont want me to have it. The first statement is a realistic and objective assessment of a situation, while the other carries an emotional message.”
—Jean Ross Peterson (20th century)
“Truth is that concordance of an abstract statement with the ideal limit towards which endless investigation would tend to bring scientific belief, which concordance the abstract statement may possess by virtue of the confession of its inaccuracy and one-sidedness, and this confession is an essential ingredient of truth.”
—Charles Sanders Peirce (18391914)
“The new statement is always hated by the old, and, to those dwelling in the old, comes like an abyss of skepticism.”
—Ralph Waldo Emerson (18031882)