Simplicial Set - The Standard n-simplex and The Simplex Category

The Standard n-simplex and The Simplex Category

Categorically, the standard n-simplex, denoted Δn, is the functor hom(-, n) where n denotes the string 0 → 1 → ... → n of the first (n + 1) nonnegative integers and the homset is taken in the category Δ. In many texts, it is written instead as hom(n,-) where the homset is understood to be in the opposite category Δop.

The geometric realization |Δn| is just defined to be the standard topological n-simplex in general position given by

By the Yoneda lemma, the n-simplices of a simplicial set X are classified by natural transformations in hom(Δn, X). The n-simplices of X are then collectively denoted by Xn. Furthermore, there is a simplex category, denoted by whose objects are maps (i.e. natural transformations) ΔnX and whose morphisms are natural transformations Δn → Δm over X arising from maps n m in Δ. The following isomorphism shows that a simplicial set X is a colimit of its simplices:

where the colimit is taken over the simplex category of X.

Read more about this topic:  Simplicial Set

Famous quotes containing the words standard and/or category:

    A disposition to preserve, and an ability to improve, taken together, would be my standard of a statesman.
    Edmund Burke (1729–1797)

    The truth is, no matter how trying they become, babies two and under don’t have the ability to make moral choices, so they can’t be “bad.” That category only exists in the adult mind.
    Anne Cassidy (20th century)