Simplicial Set - Homotopy Theory of Simplicial Sets

Homotopy Theory of Simplicial Sets

In the category of simplicial sets one can define fibrations to be Kan fibrations. A map of simplicial sets is defined to be a weak equivalence if the geometric realization is a weak equivalence of spaces. A map of simplicial sets is defined to be a cofibration if it is a monomorphism of simplicial sets. It is a difficult theorem of Daniel Quillen that the category of simplicial sets with these classes of morphisms satisfies the axioms for a proper closed simplicial model category.

A key turning point of the theory is that the realization of a Kan fibration is a Serre fibration of spaces. With the model structure in place, a homotopy theory of simplicial sets can be developed using standard homotopical abstract nonsense. Furthermore, the geometric realization and singular functors give a Quillen equivalence of closed model categories inducing an equivalence of homotopy categories

|•|: Ho(S) ↔ Ho(Top) : S

between the homotopy category for simplicial sets and the usual homotopy category of CW complexes with homotopy classes of maps between them. It is part of the general definition of a Quillen adjunction that the right adjoint functor (in this case, the singular set functor) carries fibrations (resp. trivial fibrations) to fibrations (resp. trivial fibrations).

Read more about this topic:  Simplicial Set

Famous quotes containing the words theory and/or sets:

    There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.
    —A.J. (Alfred Jules)

    It is mediocrity which makes laws and sets mantraps and spring-guns in the realm of free song, saying thus far shalt thou go and no further.
    James Russell Lowell (1819–91)