Basic Properties of Simple Modules
The simple modules are precisely the modules of length 1; this is a reformulation of the definition.
Every simple module is indecomposable, but the converse is in general not true.
Every simple module is cyclic, that is it is generated by one element.
Not every module has a simple submodule; consider for instance the Z-module Z in light of the first example above.
Let M and N be (left or right) modules over the same ring, and let f : M → N be a module homomorphism. If M is simple, then f is either the zero homomorphism or injective because the kernel of f is a submodule of M. If N is simple, then f is either the zero homomorphism or surjective because the image of f is a submodule of N. If M = N, then f is an endomorphism of M, and if M is simple, then the prior two statements imply that f is either the zero homomorphism or an isomorphism. Consequently the endomorphism ring of any simple module is a division ring. This result is known as Schur's lemma.
The converse of Schur's lemma is not true in general. For example, the Z-module Q is not simple, but its endomorphism ring is isomorphic to the field Q.
Read more about this topic: Simple Module
Famous quotes containing the words basic, properties and/or simple:
“What, then, is the basic difference between todays computer and an intelligent being? It is that the computer can be made to see but not to perceive. What matters here is not that the computer is without consciousness but that thus far it is incapable of the spontaneous grasp of patterna capacity essential to perception and intelligence.”
—Rudolf Arnheim (b. 1904)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“The Simple Life is not a simple life.”
—Mason Cooley (b. 1927)