Similicaudipteryx - Paleobiology

Paleobiology

The nature of the feathers preserved in the two immature Yixian specimens of Similicaudipteryx appeared to Xu and colleagues, who described the two feathered specimens, to change with age. The youngest specimen had relatively short primary feathers (those anchored to the hand) compared to its tail feathers. In the older specimen, the primary feathers were the same length as the tail feathers, and secondary feathers (those anchored to the lower arm) were also present. The primary feathers may have grown more slowly than the tail feathers, not reaching equal size until the animal was close to maturity, and the secondary feathers would not appear at all until this more mature stage. This suggests that the wing feathers had little use at a young age, only becoming fully developed with maturity.

Additionally, the youngest specimen's vaned feathers appeared to lack barbs except at the tip, instead consisting of a solid sheet. Xu and colleagues interpreted the stark differences in the feathers of the two specimens as primarily age-related. They speculated that hatchling Similicaudipteryx would have been covered in natal down like modern birds. As the animal aged, the down would be replaced by vaned pennaceous feathers on the hands and tail, but ribbon-like and primitive in form, similar to the tail feathers of Confuciusornis, Epidexipteryx, and some enantiornithines. These feathers would be lost through moulting as the animal aged, and replaced with more modern-style barbed feathers. The primary feathers grew more slowly than the tail feathers, not reaching equal size until the animal was close to maturity, and the secondary feathers would not appear at all until this more mature stage. This suggests that the wing feathers had little use at a young age, only becoming fully developed with maturity.

However, feather development specialist Richard Prum disputed the above interpretation of the feathers in a November 2010 letter to the journal Nature. Prum noted that the apparently ribbon-like structure of the juvenile's feathers were consistent with pennaceous feathers in the midst of moulting. In modern birds, new vaned feathers emerge from the feather follicle enclosed in a "pin feather", a solid tube covered in keratin. Usually, the tip of this tube will fall away first, leaving a structure identical to that seen in the Similicaudipteryx fossil. Later, the rest of the sheath falls away when the entire feather has fully developed. Prum also noted, as did Xu and his team, that the structure of the Similicaudipteryx feathers is fundamentally different from other prehistoric birds with ribbon-like tail feathers. In those other species, the ribbon portion is formed from a flattened and expanded rachis, or central quill, of the feather, with the feather barbs expanding out at the tip. In Similicaudipteryx, however, the "ribbon" like portion is the same width as the vaned tip. This is consistent with what is seen in feathers in the process of moulting. Prum concluded that rather than representing an instance of feathers changing in form as the animal aged, this specimen represents the first known fossil evidence of feather moulting.

Prum also noted that in modern birds, tail feathers moult sequentially, not simultaneously as in Similicauipteryx. However, the sequential moulting of modern birds is because the birds need to retain their ability to fly during the moult. For lineages more primitive than the advent of flight, like Similicaudipteryx, this would not have been an issue, and all the wing and tail feathers of primitive feathered theropods may have moulted simultaneously.

Read more about this topic:  Similicaudipteryx