Short-beaked Echidna - Description

Description

Short-beaked echidnas are typically 30 to 45 cm (12 to 18 in) in length, with 75 mm (3 in) of snout, and weigh between 2 and 5 kg (4.4 and 11 lb). However, the Tasmanian subspecies, T. a. setosus, is smaller than its Australian mainland counterparts. Because the neck is not externally visible, the head and body appear to merge. The earholes are on either side of the head, with no external pinnae. The eyes are small, about 9 mm (0.4 in) in diameter and at the base of the wedge-shaped snout. The nostrils and the mouth are at the distal end of the snout; the mouth cannot open wider than 5 mm (0.2 in). The body of the short-beaked echidna is, with the exception of the underside, face and legs, covered with cream-coloured spines. The spines, which may be up to 50 mm (2 in) long, are modified hairs, mostly made of keratin. Insulation is provided by fur between the spines, which ranges in colour from honey to a dark reddish-brown and even black; the underside and short tail are also covered in fur. Colouration of the fur and spines varies with geographic location. The echidna's fur may be infested with what is said to be the world's largest flea, Bradiopsylla echidnae, which is about 4 mm (0.16 in) long.

The limbs of the short-beaked echidna are adapted for rapid digging; they are short and have strong claws. Their strong and stout limbs allow it to tear apart large logs and move paving stones, and one has been recorded moving a 13.5-kg (30-lb) stone; a scientist also reported a captive echidna moved a refrigerator around the room in his home. The power of the limbs are based on strong musculature, particularly around the shoulder and torso areas. The mechanical advantage of its arm is greater than that of humans, as its biceps connects the shoulder to forearm at a point further down than for humans, and the chunky humerus allows more muscle to form.

The claws on the hind feet are elongated and curved backward to enable cleaning and grooming between the spines. Like the platypus, the echidna has a low body temperature—between 30 and 32°C (86 and 90°F)—but, unlike the platypus, which shows no evidence of torpor or hibernation, the body temperature of the echidna may fall as low as 5°C (41°F). The Echidna does not pant or sweat and normally seeks shelter in hot conditions. Despite the inability to sweat, echidnas still lose water as they exhale. The snout is believed to be crucial in restricting this loss to sustainable levels, through a bony labyrinth that has a refrigerator effect and helps to condense water vapour in the breath. The echidna does not have highly concentrated urine, and around half of the estimated daily water loss of 120 g (4.2 oz) occurs in this manner, while most of the rest is through the skin and respiratory system. Most of this is replenished by its substantial eating of termites—one laboratory study reported it would ingest around 147 g (5.2 oz) a day, most of which was water. This can be supplemented by drinking water if available, or licking morning dew from flora.

In autumn and winter the echidna shows periods of torpor or deep hibernation. Because of the low body temperature, it becomes sluggish in very hot and very cold weather.

Like all monotremes, it has one orifice, the cloaca, for the passage of faeces, urine and reproductive products. The male has internal testes, no external scrotum and a highly unusual penis with four knobs on the tip, which is nearly a quarter of his body length when erect. The gestating female develops a pouch on its underside, where it raises its young.

The musculature of the short-beaked echidna has a number of unusual aspects. The panniculus carnosus, an enormous muscle just beneath the skin, covers the entire body. By contraction of various parts of the panniculus carnosus, the short-beaked echidna can change shape, the most characteristic shape change being achieved by rolling itself into a ball when threatened, so protecting its belly and presenting a defensive array of sharp spines. It has one of the shortest spinal cords of any mammal, extending only as far as the thorax. Whereas the human spinal cord ends at the first or second lumbar vertebra, for the echidna it occurs at the seventh thoracic vertebra. The shorter spinal cord is thought to allow it the flexibility to wrap into a ball.

The musculature of the face, jaw and tongue is specialised to allow the echidna to feed. The tongue is the animal's sole means of catching prey, and can protrude up to 180 mm (7 in) outside the snout. The snout's shape, resembling a double wedge, gives it a significant mechanical advantage in generating a large moment, so makes it efficient for digging to reach prey or to build a shelter. The tongue is sticky because of the presence of glycoprotein-rich mucus, which both lubricates movement in and out of the snout and helps to catch ants and termites, which adhere to it. Protrusion of the tongue is achieved by contracting circular muscles that change the shape of the tongue and force it forwards and contracting two genioglossal muscles attached to the caudal end of the tongue and to the mandible. The protruded tongue is stiffened by the rapid flow of blood, allowing it to penetrate wood and soil. Retraction requires the contraction of two internal longitudinal muscles, known as the sternoglossi. When the tongue is retracted, the prey is caught on backward-facing keratinous "teeth", located along the roof of the buccal cavity, allowing the animal both to capture and grind food. The tongue moves with great speed, and has been measured to move in and out of the snout 100 times a minute. This is partly achieved through the elasticity of the tongue and the conversion of elastic potential energy into kinetic energy. The tongue is very flexible, particularly at the end, allowing it to bend in U-turns and catch insects attempting to flee in their twisty nests or mounds. The tongue also has an ability to avoid picking up splinters while foraging in logs; the reason for this ability is unknown. It can eat quickly; a specimen of around 3 kg (6.6 lb) can ingest 200 g (7.1 oz) of termites in 10 minutes.

The echidna's stomach is quite different from other mammals. It is devoid of secretory glands and has cornified stratified epithelium, which resembles horny skin. Unlike other mammals, which typically have highly acidic stomachs, the echidna has low levels of acidity, almost neutral, with pH in the 6.2–7.4 range. The stomach is elastic, and the gastric peristalsis grinds soil particulates and shredded insects together. The digestion occurs in the small intestine, which is around 3.4 m (11 ft) in length. The insect exoskeletons and soil are not digested, so are ejected in the waste.

Numerous physiological adaptations aid the lifestyle of the short-beaked echidna. Because the animal burrows, it must tolerate very high levels of carbon dioxide in inspired air, and will voluntarily remain in situations where carbon dioxide concentrations are high. It can dig up to a metre into the ground to retrieve ants or evade predators, and can survive with low oxygen when the area is engulfed by bushfires. The echidna can also dive underwater, which can help it to survive sudden floods. During these situations, the heart rate drops to around 12 beats per minute, around one-fifth of the rate at rest. This process is believed to save oxygen for the heart and brain, which are the most sensitive to such a shortage, and laboratory testing has revealed its cardiovascular system is similar to that of the seal.

The echidna's optical system is an uncommon hybrid of both mammalian and reptilian characteristics. The cartilaginous layer beneath the scleral layer of the eyeball is similar to that of reptiles and avians. The small cornea's surface is keratinised and hardened, possibly an evolution to protect it from chemicals secreted by prey insects or self-impalement when it rolls itself up, which has been observed. The echidna has the flattest lens of any animal, giving it the longest focal length. This similarity to primates and humans allows it to see distant objects clearly. Unlike placental mammals, including humans, the echidna does not have a ciliary muscle to distort the geometry of the lens and thereby change the focal length and allow objects at different distances to be viewed clearly; the whole eye is believed to distort, so the distance between the lens and screen instead changes to allow focusing. The visual ability of an echidna is not great, and it is not known whether it can perceive colour; however, it can distinguish between black and white, and horizontal and vertical stripes. Eyesight is not a crucial factor in the animal's ability to survive, as blind echidnas are able to live healthily.

Its ear is sensitive to low-frequency sound, which may be ideal for detecting sounds emitted by termites and ants underground. The pinnae are obscured and covered by hair, so predators can not grab them in an attack, and prey or foreign material cannot enter, although ticks are known to reside there. The macula of the ear is very large compared to other animals, and is used as a gravity sensor to orient the echidna. The large size is speculated to be due to importance of burrowing downwards for an echidna.

The leathery snout is keratinised and covered in mechano- and thermoreceptors, which provide information about the surrounding environment. These nerves protrude through microscopic holes at the end of the snout. It also has mucus glands on the end of the snout that act as electroreceptors. It can detect electric fields of 1.8 mV/cm—1,000 times more sensitive than humans—and dig up buried batteries. Echidnas have a series of push rods protruding from their snouts. These are columns of flattened, spinous cells, with roughly an average diameter of 50 micrometres and a length of 300 micrometres. The number of push rods per square millimetre of skin is estimated to be 30 to 40. Longitudinal waves are believed to be picked up and transmitted through the rods, acting as mechanical sensors, to allow prey detection.

The short-beaked echidna has a well-developed olfactory system, which may be used to detect mates and prey. It has a highly sensitive optic nerve, and has been shown to have visual discrimination and spatial memory comparable to those of a rat. The brain and central nervous system have been extensively studied for evolutionary comparison with placental mammals, particularly with its fellow monotreme, the platypus. The average brain volume is 25 ml, similar to a cat of approximately the same size; while the platypus has a largely lissencephalic and smooth brain, the echidna has a heavily folded and fissured, gyrencephalic brain similar to humans, which is seen as a sign of a highly neurologically advanced animal. The cerebral cortex is thinner, and the brain cells are larger and more densely packed and organised in the echidna than the platypus, suggesting evolutionary divergence must have occurred long ago. Almost half of the sensory area in the brain is devoted to the snout and tongue, and the part devoted to smell is relatively large compared to other animals.

The short-beaked echidna has the largest prefrontal cortex relative to body size of any mammal, taking up 50% of the volume in comparison to 29% for humans. This part of the brain in humans is though to be used for planning and analytical behaviour, leading to debate as to whether the echidna has reasoning and strategising ability. Experiments in a simple maze and with a test on whether the animal can open a trap door to access food, and the echidna's ability to remember what it has learnt about the task for over a month, has led scientists to conclude its learning ability is similar to that of a cat or a rat.

The echidna shows rapid eye movement during sleep, usually around its thermoneutral temperature of 25°C, and this effect is suppressed at other temperatures. Its brain has been shown to contain a claustrum similar to that of placental mammals, so linking this structure to their common ancestor.

Read more about this topic:  Short-beaked Echidna

Famous quotes containing the word description:

    I fancy it must be the quantity of animal food eaten by the English which renders their character insusceptible of civilisation. I suspect it is in their kitchens and not in their churches that their reformation must be worked, and that Missionaries of that description from [France] would avail more than those who should endeavor to tame them by precepts of religion or philosophy.
    Thomas Jefferson (1743–1826)

    Whose are the truly labored sentences? From the weak and flimsy periods of the politician and literary man, we are glad to turn even to the description of work, the simple record of the month’s labor in the farmer’s almanac, to restore our tone and spirits.
    Henry David Thoreau (1817–1862)

    The next Augustan age will dawn on the other side of the Atlantic. There will, perhaps, be a Thucydides at Boston, a Xenophon at New York, and, in time, a Virgil at Mexico, and a Newton at Peru. At last, some curious traveller from Lima will visit England and give a description of the ruins of St. Paul’s, like the editions of Balbec and Palmyra.
    Horace Walpole (1717–1797)