Shell Theorem

In classical mechanics, the shell theorem gives gravitational simplifications that can be applied to objects inside or outside a spherically symmetrical body. This theorem has particular application to astronomy.

Isaac Newton proved the shell theorem saying that:

  1. A spherically symmetric body affects external objects gravitationally as though all of its mass were concentrated at a point at its centre.
  2. If the body is a spherically symmetric shell (i.e., a hollow ball), no net gravitational force is exerted by the shell on any object inside, regardless of the object's location within the shell.

A corollary is that inside a solid sphere of constant density the gravitational force varies linearly with distance from the centre, becoming zero by symmetry at the centre of mass.

This is easy to see: take a point within such a sphere, at a distance from the centre of the sphere, then you can ignore all the shells of greater radius by the shell theorem. So, the remaining mass m is proportional to, and the gravitational force exerted on it is proportional to, so to, so is linear in .

These results were important to Newton's analysis of planetary motion; they are not immediately obvious, but they can be proven with calculus. (Alternatively, Gauss's law for gravity offers a much simpler way to prove the same results.)

In addition to gravity, the shell theorem can also be used to describe the electric field generated by a static spherically symmetric charge density, or similarly for any other phenomenon that follows an inverse square law. The derivations below focus on gravity, but the results can easily be generalized to the electrostatic force.

Read more about Shell Theorem:  Outside The Shell, Inside A Shell, Derivation Using Gauss's Law, Converses and Generalisations

Famous quotes containing the words shell and/or theorem:

    We want some coat woven of elastic steel, stout as the first, and limber as the second. We want a ship in these billows we inhabit. An angular, dogmatic house would be rent to chips and splinters, in this storm of many elements. No, it must be tight, and fit to the form of man, to live at all; as a shell is the architecture of a house founded on the sea.
    Ralph Waldo Emerson (1803–1882)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)