Sexual Dimorphism - Mammals and Birds - Birds

Birds

Sexual dimorphism in birds can be manifested in size or plumage differences between the sexes. Sexual size dimorphism varies among taxa with males typically being larger, though this is not always the case i.e. birds of prey and some species of flightless birds. Plumage dimorphism, in the form of ornamentation or coloration, also varies, though males are typically the more ornamented or brightly colored sex. Such differences have been attributed to the unequal reproductive contributions of the sexes. In some species, the male's contribution to reproduction ends at copulation, while in other species the male becomes the main caregiver. Plumage polymorphisms have evolved to reflect these differences and other measures of reproductive fitness, such as body condition or survival. The male phenotype sends signals to females who then choose the 'fittest' available male.

Sexual dimorphism is a product of both genetics and environmental factors. An example of sexual polymorphism determined by environmental conditions exists in the house finch. House finch males can be classified into three categories during breeding season: black breeders, brown breeders, and brown auxiliaries. These differences arise in response to the bird's body condition: if they are healthy they will produce more androgens thus becoming black breeders, while less healthy birds produce less androgens and become brown auxiliaries. The reproductive success of the male is thus determined by his success during each year's non-breeding season, causing reproductive success to vary with each year's environmental conditions.

Sexual dimorphism is maintained by the counteracting pressures of natural selection and sexual selection. For example, sexual dimorphism in coloration increases the vulnerability of bird species to predation by European sparrowhawks in Denmark. Presumably, increased sexual dimorphism means males are brighter and more conspicuous, leading to increased predation. Moreover, the production of more exaggerated ornaments in males may come at the cost of suppressed immune function. So long as the reproductive benefits of the trait due to sexual selection are greater than the costs imposed by natural selection, then the trait will propagate throughout the population. Reproductive benefits arise in the form of a larger number of offspring, while natural selection imposes costs in the form of reduced survival. This means that even if the trait causes males to die earlier, the trait is still beneficial so long as males with the trait produce more offspring than males lacking the trait.

Such differences in form and reproductive roles often cause differences in behavior. As previously stated, males and females often have different roles in reproduction. The courtship and mating behavior of males and females are regulated largely by hormones throughout a bird's lifetime. Activational hormones occur during puberty and adulthood and serve to 'activate' certain behaviors when appropriate, such as territoriality during breeding season. Organizational hormones occur only during a critical period early in development, either just before or just after hatching in most birds, and determine patterns of behavior for the rest of the bird's life. Such behavioral differences can cause disproportionate sensitivities to anthropogenic pressures. Females of the whinchat in Switzerland breed in intensely managed grasslands. Earlier harvesting of the grasses during the breeding season lead to more female deaths. Populations of many birds are often male-skewed and when sexual differences in behavior increase this ratio, populations decline at a more rapid rate.

Sexual Dimorphism may also influence differences in parental investment during times of food scarcity. For example, in the Blue-footed Booby, the female chicks grow faster than the males, resulting in booby parents producing the smaller sex, the males, during times of food shortage. This them results in the maximization of parental lifetime reproductive success.

Consequently, sexual dimorphism has important ramifications for conservation. However, sexual dimorphism is not only found in birds and is thus important to the conservation of many animals. Such differences in form and behavior can lead to sexual segregation, defined as sex differences in space and resource use. Most sexual segregation research has been done on ungulates, but such research extends to bats, kangaroos, and birds. Sex-specific conservation plans have even been suggested for species with pronounced sexual segregation.

Read more about this topic:  Sexual Dimorphism, Mammals and Birds

Famous quotes containing the word birds:

    The kiss of the sun for pardon,
    The song of the birds for mirth,
    One is nearer God’s Heart in a garden
    Than anywhere else on earth.
    Dorothy Frances Gurney (1858–1932)

    The kiss of the sun for pardon,
    The song of the birds for mirth,—
    One is nearer God’s heart in a garden
    Than anywhere else on earth.
    Dorothy Frances Gurney (1858–1932)

    Chaucer is fresh and modern still, and no dust settles on his true passages. It lightens along the line, and we are reminded that flowers have bloomed, and birds sung, and hearts beaten in England. Before the earnest gaze of the reader, the rust and moss of time gradually drop off, and the original green life is revealed. He was a homely and domestic man, and did breathe quite as modern men do.
    Henry David Thoreau (1817–1862)