Relation To The Octonions
Just as the 3-dimensional cross product can be expressed in terms of the quaternions, the 7-dimensional cross product can be expressed in terms of the octonions. After identifying ℝ7 with the imaginary octonions (the orthogonal complement of the real line in O), the cross product is given in terms of octonion multiplication by
Conversely, suppose V is a 7-dimensional Euclidean space with a given cross product. Then one can define a bilinear multiplication on ℝ⊕V as follows:
The space ℝ⊕V with this multiplication is then isomorphic to the octonions.
The cross product only exists in three and seven dimensions as one can always define a multiplication on a space of one higher dimension as above, and this space can be shown to be a normed division algebra. By Hurwitz's theorem such algebras only exist in one, two, four, and eight dimensions, so the cross product must be in zero, one, three or seven dimensions. The products in zero and one dimensions are trivial, so non-trivial cross products only exist in three and seven dimensions.
The failure of the 7-dimension cross product to satisfy the Jacobi identity is due to the nonassociativity of the octonions. In fact,
where is the associator.
Read more about this topic: Seven-dimensional Cross Product
Famous quotes containing the words relation to and/or relation:
“Whoever has a keen eye for profits, is blind in relation to his craft.”
—Sophocles (497406/5 B.C.)
“In relation to God, we are like a thief who has burgled the house of a kindly householder and been allowed to keep some of the gold. From the point of view of the lawful owner this gold is a gift; From the point of view of the burglar it is a theft. He must go and give it back. It is the same with our existence. We have stolen a little of Gods being to make it ours. God has made us a gift of it. But we have stolen it. We must return it.”
—Simone Weil (19091943)