Setoid - Constructive Mathematics

Constructive Mathematics

In constructive mathematics, one often takes a setoid with an apartness relation instead of an equivalence relation, called a constructive setoid. One sometimes also considers a partial setoid using a partial equivalence relation or partial apartness. (see e.g. Barthe et al., section 1)

Read more about this topic:  Setoid

Famous quotes containing the words constructive and/or mathematics:

    ... the constructive power of an image is not measured in terms of its truth, but of the love it inspires.
    Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 1, ch. 15 (1962)

    In mathematics he was greater
    Than Tycho Brahe, or Erra Pater:
    For he, by geometric scale,
    Could take the size of pots of ale;
    Resolve, by sines and tangents straight,
    If bread and butter wanted weight;
    And wisely tell what hour o’ th’ day
    The clock doth strike, by algebra.
    Samuel Butler (1612–1680)