Serine Protease Inhibitors - Other Mechanisms of Serpin-related Disease

Other Mechanisms of Serpin-related Disease

In humans, simple deficiency of many serpins (e.g., through a null mutation) may result in disease (see Table 1).

It is rare that single amino acid changes in the RCL of a serpin alters the specificity of the inhibitor and allow it to target the wrong protease. For example, the Antitrypsin-Pittsburgh mutation (methionine 358 to arginine) allowed the serpin to inhibit thrombin, thus causing a bleeding disorder.

Serpins are suicide inhibitors, the RCL acting as a "bait." Certain disease-linked mutations in the RCL of human serpins permit true substrate-like behaviour and cleavage without complex formation. Such variants are speculated to affect the rate or the extent of RCL insertion into the A-sheet. These mutations, in effect, result in serpin deficiency through a failure to properly control the target protease.

Several non-inhibitory serpins play key roles in important human diseases. For example, maspin functions as a tumour suppressor in breast and prostate cancer. The mechanism of maspin function remains to be fully understood. Murine knockouts of maspin are lethal; these data suggest that maspin plays a key role in development.

Read more about this topic:  Serine Protease Inhibitors

Famous quotes containing the word disease:

    The fantasies inspired by TB in the last century, by cancer now, are responses to a disease thought to be intractable and capricious—that is, a disease not understood—in an era in which medicine’s central premise is that all diseases can be cured.
    Susan Sontag (b. 1933)