Research in Topology
Novikov's early work was in cobordism theory, in relative isolation. Among other advances he showed how the Adams spectral sequence, a powerful tool for proceeding from homology theory to the calculation of homotopy groups, could be adapted to the new (at that time) cohomology theory typified by cobordism and K-theory. This required the development of the idea of cohomology operations in the general setting, since the basis of the spectral sequence is the initial data of Ext functors taken with respect to a ring of such operations, generalising the Steenrod algebra. The resulting Adams–Novikov spectral sequence is now a basic tool in stable homotopy theory.
Novikov also carried out important research in geometric topology, being one of the pioneers with William Browder, Dennis Sullivan and Terry Wall of the surgery theory method for classifying high-dimensional manifolds. He proved the topological invariance of the rational Pontryagin classes, and posed the Novikov conjecture. This work was recognised by the award in 1970 of the Fields Medal. From about 1971 he moved to work in the field of isospectral flows, with connections to the theory of theta functions. Novikov's conjecture about the Riemann-Schottky problem (characterizing principally polarized abelian varieties that are the Jacobian of some algebraic curve) stated, essentially, that this was the case if and only if the corresponding theta function provided a solution to the Kadomtsev–Petviashvili equation of soliton theory. This was proved by Shiota (1986), following earlier work by Arbarello and de Concini (1984), and by Mulase (1984).
Read more about this topic: Sergei Novikov (mathematician)
Famous quotes containing the words research in and/or research:
“The great question that has never been answered and which I have not get been able to answer, despite my thirty years of research into the feminine soul, is What does a women want?”
—Sigmund Freud (18561939)
“Feeling that you have to be the perfect parent places a tremendous and completely unnecessary burden on you. If weve learned anything from the past half-centurys research on child development, its that children are remarkably resilient. You can make lots of mistakes and still wind up with great kids.”
—Lawrence Kutner (20th century)