Sequential Dynamical System
Sequential dynamical systems (SDSs) are a class of graph dynamical systems. They are discrete dynamical systems which generalize many aspects of for example classical cellular automata, and they provide a framework for studying asynchronous processes over graphs. The analysis of SDSs uses techniques from combinatorics, abstract algebra, graph theory, dynamical systems and probability theory.
Read more about Sequential Dynamical System: Definition, Example, See Also
Famous quotes containing the word system:
“Our system of government, in spite of Vietnam, Cambodia, CIA, Watergate, is still the best system of government on earth. And the greatest resource of all are the 215 million Americans who still have within us the strength, the character, the intelligence, the experience, the patriotism, the idealism, the compassion, the sense of brotherhood on which we can rely in the future to restore the greatness to our country.”
—Jimmy Carter (James Earl Carter, Jr.)