Separated Sets - Definitions

Definitions

There are various ways in which two subsets of a topological space X can be considered to be separated.

  • A and B are disjoint if their intersection is the empty set. This property has nothing to do with topology as such, but only set theory; we include it here because it is the weakest in the sequence of different notions. For more on disjointness in general, see: disjoint sets.
  • A and B are separated in X if each is disjoint from the other's closure. The closures themselves do not have to be disjoint from each other; for example, the intervals are separated in the real line R, even though the point 1 belongs to both of their closures. More generally in any metric space, two open balls Br(x1) = {y:d(x1,y)<r} and Bs(x2) = {y:d(x2,y)<s} are separated whenever d(x1,x2) ≥ r+s. Note that any two separated sets automatically must be disjoint.
  • A and B are separated by neighbourhoods if there are neighbourhoods U of A and V of B such that U and V are disjoint. (Sometimes you will see the requirement that U and V be open neighbourhoods, but this makes no difference in the end.) For the example of A =, you could take U = (-1,1) and V = (1,3). Note that if any two sets are separated by neighbourhoods, then certainly they are separated. If A and B are open and disjoint, then they must be separated by neighbourhoods; just take U := A and V := B. For this reason, separatedness is often used with closed sets (as in the normal separation axiom).
  • A and B are separated by closed neighbourhoods if there is a closed neighbourhood U of A and a closed neighbourhood V of B such that U and V are disjoint. Our examples, are not separated by closed neighbourhoods. You could make either U or V closed by including the point 1 in it, but you cannot make them both closed while keeping them disjoint. Note that if any two sets are separated by closed neighbourhoods, then certainly they are separated by neighbourhoods.
  • A and B are separated by a function if there exists a continuous function f from the space X to the real line R such that f(A) = {0} and f(B) = {1}. (Sometimes you will see the unit interval used in place of R in this definition, but it makes no difference in the end.) In our example, are not separated by a function, because there is no way to continuously define f at the point 1. Note that if any two sets are separated by a function, then they are also separated by closed neighbourhoods; the neighbourhoods can be given in terms of the preimage of f as U := f-1 and V := f-1, as long as e is a positive real number less than 1/2.
  • A and B are precisely separated by a function if there exists a continuous function f from X to R such that f -1(0) = A and f -1(1) = B. (Again, you may also see the unit interval in place of R, and again it makes no difference.) Note that if any two sets are precisely separated by a function, then certainly they are separated by a function. Since {0} and {1} are closed in R, only closed sets are capable of being precisely separated by a function; but just because two sets are closed and separated by a function does not mean that they are automatically precisely separated by a function (even a different function).

Read more about this topic:  Separated Sets

Famous quotes containing the word definitions:

    What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.
    —G.C. (Georg Christoph)

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)