Separable Polynomial - Separable Field Extensions

Separable Field Extensions

Separable polynomials are used to define separable extensions: A field extension is a separable extension if and only if for every, which is algebraic over K, the minimal polynomial of over K is a separable polynomial.

Inseparable extensions (that is extensions which are not separable) may occur only in characteristic p.

The criterion above leads to the quick conclusion that if P is irreducible and not separable, then P′(X)=0. Thus we must have

P(X) = Q(Xp)

for some polynomial Q over K, where the prime number p is the characteristic.

With this clue we can construct an example:

P(X) = XpT

with K the field of rational functions in the indeterminate T over the finite field with p elements. Here one can prove directly that P(X) is irreducible, and not separable. This is actually a typical example of why inseparability matters; in geometric terms P represents the mapping on the projective line over the finite field, taking co-ordinates to their pth power. Such mappings are fundamental to the algebraic geometry of finite fields. Put another way, there are coverings in that setting that cannot be 'seen' by Galois theory. (See radical morphism for a higher-level discussion.)

If L is the field extension

K(T1/p),

in other words the splitting field of P, then L/K is an example of a purely inseparable field extension. It is of degree p, but has no automorphism fixing K, other than the identity, because T1/p is the unique root of P. This shows directly that Galois theory must here break down. A field such that there are no such extensions is called perfect. That finite fields are perfect follows a posteriori from their known structure.

One can show that the tensor product of fields of L with itself over K for this example has nilpotent elements that are non-zero. This is another manifestation of inseparability: that is, the tensor product operation on fields need not produce a ring that is a product of fields (so, not a commutative semisimple ring).

If P(x) is separable, and its roots form a group (a subgroup of the field K), then P(x) is an additive polynomial.

Read more about this topic:  Separable Polynomial

Famous quotes containing the words field and/or extensions:

    Yet, hermit and stoic as he was, he was really fond of sympathy, and threw himself heartily and childlike into the company of young people whom he loved, and whom he delighted to entertain, as he only could, with the varied and endless anecdotes of his experiences by field and river: and he was always ready to lead a huckleberry-party or a search for chestnuts and grapes.
    Ralph Waldo Emerson (1803–1882)

    The psychological umbilical cord is more difficult to cut than the real one. We experience our children as extensions of ourselves, and we feel as though their behavior is an expression of something within us...instead of an expression of something in them. We see in our children our own reflection, and when we don’t like what we see, we feel angry at the reflection.
    Elaine Heffner (20th century)